Energy efficient coverage and connectivity problem in wireless sensor networks

Download
2008
Baydoğan, Mustafa Gökçe
In this thesis, we study the energy efficient coverage and connectivity problem in wireless sensor networks (WSNs). We try to locate heterogeneous sensors and route data generated to a base station under two conflicting objectives: minimization of network cost and maximization of network lifetime. We aim at satisfying connectivity and coverage requirements as well as sensor node and link capacity constraints. We propose mathematical formulations and use an exact solution approach to find Pareto optimal solutions for the problem. We also develop a multiobjective genetic algorithm to approximate the efficient frontier, as the exact solution approach requires long computation times. We experiment with our genetic algorithm on randomly generated problems to test how well the heuristic procedure approximates the efficient frontier. Our results show that our genetic algorithm approximates the efficient frontier well in reasonable computation times.

Suggestions

Optimal pricing and production decisions in reusable container systems
Atamer, Büşra; Bakal, İsmail Serdar; Department of Industrial Engineering (2010)
In this study, we focus on pricing and production decisions in reusable container systems with stochastic demand. We consider a producer that sells a single product to the customers in reusable containers with two supply options: (i) brand-new containers, (ii) returned containers from customers. Customers purchasing the products may return the containers to the producer to receive a deposit price. The return quantity depends on both customer demand and the deposit price determined by the producer. Hence, th...
Robust facility location with mobile customers
Gül, Evren; İyigün, Cem; Department of Industrial Engineering (2011)
In this thesis, we study the dynamic facility location problem with mobile customers considering the permanent facilities. Our general aim is to locate facilities considering the movements of customers in time. The problem is studied for three objectives: P-median, P-center and MINMAX P-median. We show that dynamic facility location problem is a large instance of a static facility location problem for P-median and P-center objectives. In the problem, we represent the movements of each customer in time with ...
Lifetime extension for surveillance wireless sensor networks with intelligent redeployment
Kosar, Rabun; Bojaxhiu, Ilir; Onur, Ertan; Ersoy, Cem (Elsevier BV, 2011-11-01)
For wireless sensor networks (WSNs), uneven energy consumption is a major problem. A direct consequence of this is the energy hole problem, formation of sensing voids within the network field due to battery depleted sensors in the corresponding region. Hole formations are inherent in the network topology, yet it is possible to develop strategies to delay the hole formations to later stages of the network operation and essentially extend the network lifetime without sensing quality loss. In this work, we ini...
Mobile traffic modelling for wireless multimedia sensor networks in IoT
Al-Turjman, Fadi; Radwan, Ayman; Mumtaz, Shahid; Rodriguez, Jonathan (2017-11-01)
Wireless sensor networks suffer from some limitations such as energy constraints and the cooperative demands essential to perform multi-hop geographic routing for real-time applications. Quality of Service (QoS) depends to a great extent on offering participating nodes an incentive for collaborating. In this paper, we present a novel traffic model for a new-generation of sensor networks that supports a wide range of communication-intensive real-time multimedia applications. The model is used to investigate ...
Optimal resource allocation algorithms for efficient operation of wireless networks
Özel, Ömür; Uysal Bıyıkoğlu, Elif; Department of Electrical and Electronics Engineering (2009)
In this thesis, we analyze allocation of two separate resources in wireless networks: transmit power and buffer space. Controlled allocation of power can provide good performance for both users and the network. Although centralized mechanisms are possible, distributed power control algorithms are preferable for efficient operation of the network. Viewing distributed power allocation as the collection of rational decisions of each user, we make game theoretic problem formulations, devise distributed algorith...
Citation Formats
M. G. Baydoğan, “Energy efficient coverage and connectivity problem in wireless sensor networks,” M.S. - Master of Science, Middle East Technical University, 2008.