Formation preserving navigation of agent teams in 3-d terrains

Download
2008
Bayrak, Ali Galip
Navigation of a group of autonomous agents that are needed to maintain a formation is a challenging task which has not been studied much in especially 3-D terrains. This thesis presents a novel approach to collision free path finding of multiple agents preserving a predefined formation in a 3-D terrain. The proposed method could be used in many areas like navigation of semi-automated forces (SAF) at unit level in military simulations and non player characters (NPC) in computer games. The proposed path finding algorithm first computes an optimal path from an initial point to a target point after analyzing the 3-D terrain data from which it constructs a weighted graph. Then, it employs a real-time path finding algorithm specifically designed to realize the navigation of the group from one way point to the successive one on the optimal path generated at the previous stage, preserving the formation and avoiding collision both. A software was developed to test the methods discussed here.

Suggestions

Formation preserving path finding in 3-D terrains
Bayrak, Ali Galip; Polat, Faruk (Springer Science and Business Media LLC, 2012-03-01)
Navigation of a group of autonomous agents that are required to maintain a formation is a challenging task which has not been studied much especially in 3-D terrains. This paper presents a novel approach to collision free path finding of multiple agents preserving a predefined formation in 3-D terrains. The proposed method could be used in many areas like navigation of semi-automated forces (SAF) at unit level in military simulations and non-player characters (NPC) in computer games. The proposed path findi...
Multiresolution formation preserving path planning in 3-D virtual environments
Hoşgör, Can; Polat, Faruk; Department of Computer Engineering (2011)
The complexity of the path finding and navigation problem increases when multiple agents are involved and these agents have to maintain a predefined formation while moving on a 3-D terrain. In this thesis, a novel approach for multiresolution formation representation is proposed, that allows hierarchical formations of arbitrary depth to be defined using different referencing schemes. This formation representation approach is then utilized to find and realize a collision free optimal path from an initial loc...
A bdi-based multiagent simulation framework
Yükselen, Murat; Polat, Faruk; Department of Computer Engineering (2008)
Modeling and simulation of military operations are becoming popular with the widespread application of artificial intelligence methods. As the decision makers would like to analyze the results of the simulations in greater details, entity-level simulation of physical world and activities of actors (soldiers, tanks, etc) is unavoidable. In this thesis, a multiagent framework for simulating task driven autonomous activities of actors or group of actors is proposed. The framework is based on BDI-architecture w...
Coordinate systems for a naval virtual environment
Kılıç, Aslı; Oğuztüzün, Mehmet Halit S.; Department of Computer Engineering (2005)
The purpose of this thesis is implementing World Geodetic System (WGS) for Naval Surface Tactical Maneuvering Simulation System (NSTMSS), a High Level Architecture (HLA) based naval simulation, and also implementing body coordinate system for the ships of NSTMSS and its combination with WGS so that NSTMSS can be more accurate, and new ship dynamics models can be integrated to the NSTMSS environment more easily. To improve the coordinate system of NSTMSS these methods were used; World Geodetic System - 1984 ...
Goal oriented modeling of situation awareness in a command and control system
Soğancı, Hasan Ali; Oğuztüzün, Mehmet Halit S.; Department of Computer Engineering (2010)
This thesis presents a preliminary goal oriented modeling of situation awareness in a command and control system. Tropos, an agent oriented software development methodology, has been used for modeling. Use of Tropos allows us to represent, at the knowledge level, the Command and Control actors along with their goals and interdependencies. Through refinement we aim to derive an architectural design for the Situation Awareness component of an Air Defense Command and Control system. This work suggests that goa...
Citation Formats
A. G. Bayrak, “Formation preserving navigation of agent teams in 3-d terrains,” M.S. - Master of Science, Middle East Technical University, 2008.