Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Biorefining of sugar-beet processing wastes by anaerobic biotechnology: waste stabilization and bioproduct formation
Download
index.pdf
Date
2008
Author
Alkaya, Emrah
Metadata
Show full item record
Item Usage Stats
278
views
90
downloads
Cite This
The main objective of this study was to investigate two of the possible exploitation routes of anaerobic digestion (acid-phase and methane-phase) for the treatment of sugar-beet processing wastes, while producing valuable biobased products. For this purpose, four sets of laboratory experiments were carried out in a stepwise fashion: First, in the biochemical methane potential (BMP) assay (Set-up 1) wastewater and beet-pulp were efficiently digested (63.787.3% COD removal and 69.689.3% VS reduction) in batch anaerobic reactors. Secondly, wastewater and beet-pulp could simultaneously be converted to VFAs in acidogenic anaerobic reactors with considerable acidification degrees (43.852.9%), optimizing the operational conditions (Set-up 2). Then, the produced VFAs were recovered by liquid-liquid extraction (Set-up 3), in which highest VFA recoveries (60.797.6%) were observed at 20% trioctylphosphine oxide (TOPO) in kerosene with KD values ranging between 1.54 and 40.79 at pH 2.5. Finally, methane-phase anaerobic digestion was evaluated in two different reactor configurations, namely fed-batch continuously mixed reactor (FCMR) and anaerobic sequencing batch reactor (ASBR) (Set-up 4). Methane production yield of 255 ± 11 mL/g COD-added was increased to 337 ± 15 mL/g COD-added (32.2% increase in methane yield) when configuration was changed from FCMR to ASBR. In addition, tCOD removal was increased from 68.7 ± 2.2 to 79.7 ± 1.1%. Based on the result obtained in this study, it is postulated that, biorefining of sugar-beet processing wastes by anaerobic digestion can not only be a solution for environmental related problems, but also contribute to resource conservation.
Subject Keywords
Environmental engineering.
,
Environmental protection.
URI
http://etd.lib.metu.edu.tr/upload/12609791/index.pdf
https://hdl.handle.net/11511/17773
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Dark fermentative bio-hydrogen production from sugar-beet processing wastes
Özkan, Leyla; Demirer, Göksel Niyazi; Department of Environmental Engineering (2009)
In this study, bio-hydrogen generation potential of sugar-beet processing wastes (sugar-beet processing wastewater and beet-pulp) through dark fermentation was investigated. For this purpose, four different experimental set-ups were used. In the first set-up, sugar-beet processing wastewater was used along with four different cultures to investigate the effect of culture type on bio-hydrogen production. In addition, unseeded reactor was prepared to investigate bio-hydrogen production potential of indigenous...
Aerobic biological treatment of opium alkaloid wastewater-effect of gamma radiation and fenton's oxidation as pretreatment
Bural, Cavit Burak; Dilek, Filiz Bengü; Department of Environmental Engineering (2008)
In this study, aerobic biological treatment of opium alkaloid wastewater and the effect of gamma preirradiation and fenton’s oxidation were investigated. First, the biodegradability of alkaloid wastewater was investigated by batch reactors and wastewater was found to be highly biodegradable providing 83 90 % COD degradation. In order to evaluate the effect of irradiation, original wastewater and irradiated wastewaters (40 & 140 kGy) were compared by means of BOD5/COD values and through aerobic batch experi...
Combination of alkaline solubilization with microwave digestion as a sludge disintegration method: effect on gas production and quantity and dewaterability of anaerobically digested sludge
Doğan, Ilgın; Sanin, Faika Dilek; Department of Environmental Engineering (2008)
The significant increase in the sewage sludge production in treatment plants makes anaerobic digestion more important as a stabilization process. However hydrolysis is the rate-limiting step of anaerobic digestion because of the semirigid structure of the microbial cells. Pretreatment of waste activated sludge (WAS) leads to disruption of cell walls and release of extracellular and intracellular materials. Therefore biodegradability of sludge will be improved in terms of more biogas production and sludge mi...
Removal and recovery of nutrients as struvite from anaerobic digestion/co-digestion residues of poultry manure
Yılmazel, Yasemin Dilşad; Demirer, Göksel Niyazi; Department of Environmental Engineering (2009)
The main objective of this study was to investigate the removal and recovery of nutrients from anaerobic digestion residues of poultry manure through struvite (MgNH4PO4.6H2O, MAP) precipitation. To this purpose, three sets of laboratory experiments were conducted. In the first set, separate and co-digestion of poultry manure and sewage sludge were studied in laboratory-scale mesophilic anaerobic batch reactors and subsequent struvite precipitation experiments were conducted with the reactors effluents. The ...
Assessment of management policies for lake Ulubat basin using avswat
Bulut, Elif; Aksoy, Ayşegül; Department of Environmental Engineering (2005)
This thesis assesses phosphorus loads and management practices to control nutrient transport to Lake Uluabat. It analyzes nonpoint sources of pollution, especially agricultural pollution, throughout Uluabat Basin (watershed). AVSWAT (ArcviewTM Interface of Soil and Water Assessment Tool 2000) was used in determination of phosphorus and sediment loads to Lake Uluabat. Contribution of soluble phosphorus (SOLP) loads from agricultural sites was discussed. Seven scenarios were applied through watershed area to ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Alkaya, “Biorefining of sugar-beet processing wastes by anaerobic biotechnology: waste stabilization and bioproduct formation,” M.S. - Master of Science, Middle East Technical University, 2008.