Multiuser receivers for cdma downlink

Duran, Ömer Agah
In this thesis, multiuser receivers for code division multiple-access (CDMA) downlink are studied under frequency selective fading channel conditions. The receivers investigated in this thesis attempt to estimate desired symbol as a linear combination of chip-rate sampled received signal sequence. A common matrix-vector representation of signals, which is similar to the model given by Paulraj et. al. is constructed in order to analyze the receivers studied in this thesis. Two receivers already well known in the literature are introduced and derived by using the common signal model. One of the receivers uses traditional matched filter and the other uses symbol-level linear minimum mean square error (MMSE) estimation. The receiver that uses traditional matched filter, also known as the conventional RAKE receiver, benefits from time diversity by combining the signal energy from multiple paths. The conventional RAKE receiver is optimal when multiple-access interference (MAI) is absent. Linear MMSE based receivers are known to suppress MAI and to be more robust to noise enhancement. The optimal symbol-level linear MMSE based receiver requires inversion of large matrices whose size is determined by either number of active users or spreading factor. These two parameters can be quite large in many practical systems and hence the computational load of this receiver can be a problem. In this thesis, two alternative low-complexity receivers, which are chip-level linear MMSE equalizer proposed by Krauss et. al. and interference-suppressing RAKE receiver proposed by Paulraj et. al., are compared with the linear full-rank MMSE based receiver and with the conventional RAKE receiver in terms of bit-error-rate performance. Various simulations are performed to evaluate the performance of the receivers and the parameters affecting the receiver performance are investigated.


Comparison and evaluation of three dimensional passive source localization techniques
Batuman, Emrah; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2010)
Passive source localization is the estimation of the positions of the sources or emitters given the sensor data. In this thesis, some of the well known methods for passive source localization are investigated and compared in a stationary emitter sensor framework. These algorithms are discussed in detail in two and three dimensions for both single and multiple target cases. Passive source localization methods can be divided into two groups as two-step algorithms and single-step algorithms. Angle-of-Arrival (...
Design, analysis, and implementation of circular disk - annular ring (cdar) antenna
Kırık, Mustafa Sancay; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2007)
In satellite applications, a circularly polarized satellite antenna is desirable with a pattern that results in constant received power while the distance between the transmitter and the receiver is changing. The Circular Disk - Annular Ring (CDAR) antenna satisfies these requirements along with other requirements for the satellite antenna. The CDAR antenna is a combination of a Circular Disk and an Annular Ring patch antennas. In this thesis, a circularly polarized CDAR antenna that is fed from a single po...
Triple stub circuit topology as simultaneous insertion phase, amplitude and impedance control circuit for phased array applications
Unlu, M.; Demir, Şimşek; Akın, Tayfun (Institution of Engineering and Technology (IET), 2012-10-23)
This study shows that the well-known triple stub circuit topology can also be used for controlling the insertion phase and amplitude of a given signal simultaneously, as well as preserving its impedance transformation ability. The triple stub circuit topology, which is nothing but an extension of the conventional double stub loaded-line phase shifter, results in one more degree of freedom to its solution when it is solved for its insertion phase. This additional degree of freedom not only brings the impedan...
Design of dual polarized wideband microstrip antennas
Yıldırım, Meltem; Alatan, Lale; Department of Electrical and Electronics Engineering (2010)
In this thesis, a wideband dual polarized microstrip antenna is designed, manufactured and measured. Slot coupled patch antenna structure is considered in order to achieve the wideband characteristic. Although rectangular shaped slot coupled patch antennas are widely used in most of the applications, their utilization in dual polarized antenna structures is not feasible due to space limitations regarding the positioning of two separate coupling slots for each polarization. For a rectangular slot, the parame...
HMIC miniaturization techniques and application on an FMCW range sensor transceiver
Korkmaz, Hakan; Demir, Şimşek; Department of Electrical and Electronics Engineering (2010)
This thesis includes the study of hybrid microwave integrated circuits (HMIC), miniaturization techniques applied on HMICs and its application on a frequency modulated continuous wave (FMCW) range sensor transceiver. In the scope of study, hybrid and monolithic microwave integrated circuits (HMIC and MMIC) are introduced, advantages and disadvantages of these two types are discussed. Large size of HMICs is the main disadvantage especially for military and civil applications requiring miniature volumes. This...
Citation Formats
Ö. A. Duran, “Multiuser receivers for cdma downlink,” M.S. - Master of Science, Middle East Technical University, 2008.