Structural optimization of a triner aircraft wing by using genetic algorithm

Download
2008
Çakır, Mustafa Kağan
In this study, a design procedure incorporating a genetic algorithm (GA) is developed for optimization of the wing structure of a two seated trainer aircraft with single turboprop engine. The objective function considered is the total weight of the structure. The objective function is minimized subjected to certain strength requirements. In order to evaluate the design constraints and model the wing structure, finite element analysis is performed by using a conventional finite element solver (i.e. MSC/NASTRAN®). In addition, MSC/PATRAN® commercial package program is used as preprocessor and postprocessor tool. VISUAL FORTRAN programming language is also utilized as the genetic algorithm implementation tool. Several conclusions drawn from the optimization results are presented.

Suggestions

Structural design and evaluation of an adaptive camber wing
Sakarya, Evren; Seber, Güçlü; Department of Aerospace Engineering (2010)
This study presents a camber morphing concept as an alternative to existing plain flap or aileron type hinged control surfaces used in wings. Structural aspects of the concept are investigated with static nonlinear finite element analyses by using MSC Nastran. In order to assess the aerodynamic characteristics; CFD based 2D solutions are obtained using ANSYS Fluent. The camber morphing concept is applied to the full scale hingeless control surface and implemented in the adaptive camber wing. Hingeless contr...
Acoustically induced stress analysis of center fuselage skin panels of a basic training aircraft using statistical energy analysis
Kurtoğlu, İlker; Çalışkan, Mehmet; Department of Mechanical Engineering (2009)
Two sample statistical energy analysis (SEA) models are generated for a section of the fuselage panel of an aircraft, namely the uniform panel model which includes the frames and stringers, and the ribbed panel model in which the frames and stringers are smeared into the skin. Turbulent boundary layer (TBL) excitation is used as the primary acoustic excitation source. Stress levels are estimated from the average velocity data of the panels. The stress results are found comply with those obtained by the AGAR...
Robust controller design for a fixed wing uav
Prach, Anna; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2009)
This study describes the design and implementation of the pitch and roll autopilots for a fixed wing unmanned vehicle. A Tactical Unmanned Aerial Vehicle (TUAV), which is designed at the Middle East Technical University (METU), is used as a platform. This work combines development of the classical and robust controllers, which are used for the pitch and roll autopilots. One of the important steps in the thesis is development of the non-linear dynamic model of the UAV, which is developed in MATLAB/Simulink e...
Design and aerodynamic analysis of a VTOL tilt-wing UAV
Cakir, Hasan; Kurtuluş, Dilek Funda (2022-01-01)
The aerodynamic design and analysis of an Unmanned Air Vehicle, capable of vertical take-off and landing by employing fixed four rotors on the tilt-wing and two rotors on the tilt-tail, will be presented in this study. Both main wing and the horizontal tail can be tilted 90 degrees. During VTOL, transition and forward flight, aerodynamic and thrust forces have been employed. Different flight conditions, including the effects of angle of attack, side slip, wing tilt angle and control surfaces deflection angl...
Internal ballistic design optimization of a solid rocket motor
Açık, Sevda; Dursunkaya, Zafer; Department of Mechanical Engineering (2010)
Design process of a solid rocket motor with the objective of meeting certain mission requirements can be specified as a search for a best set of design parameters within the overall design constraints. In order to ensure that the best possible design amongst all achievable designs is being achieved, optimization is required during the design process. In this thesis, an optimization tool for internal ballistic design of solid rocket motors was developed. A direct search method Complex algorithm is used in th...
Citation Formats
M. K. Çakır, “Structural optimization of a triner aircraft wing by using genetic algorithm,” M.S. - Master of Science, Middle East Technical University, 2008.