Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Synthesis of a new conducting polymer based on functionalized anthracene and its uses as an electrochromic device component
Download
index.pdf
Date
2008
Author
Yıldırım, Ayşe Gül
Metadata
Show full item record
Item Usage Stats
216
views
90
downloads
Cite This
2,3-Dihydro-5-(10-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)anthracen-9-yl)thieno [3,4-b][1,4]dioxine (DTAT) was synthesized via linking 3,4-ethylenedioxy thiophene (EDOT) on anthracene by Stille coupling. Homopolymer P(DTAT) was achieved by electrochemical techniques. The polymer, P(DTAT) was electrosynthesized by anodic oxidation of the corresponding monomer in the presence of 0.1 M LiClO4 as the supporting electrolyte in acetonitrile (ACN) solution. Copolymer of DTAT in the presence of EDOT was synthesized via potentiodynamic method in ACN/LiClO4 (0.1 M) solvent-electrolyte couple. Structural characterizations of the sample was carried out via 1H-Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Electrochemical behaviors of the monomer and polymers were determined by Cyclic Voltammetry (CV). Electrochromic and spectroelectrochemical behavior of the polymers were investigated on ITO glass electrode, and their ability of employment in device construction was examined. Spectroelectrochemistry analysis of P(DTAT) revealed an electronic transition at 505 nm corresponding to π-π* transition with a band gap of 1.57 eV. In order to investigate electronic structure of the copolymers obtained by different applied potentials, spectroelectrochemistry studies were performed. Electrochromic investigations showed that P(DTAT) switches between yellow and blue while P(DTAT-co-EDOT) was found to be multichromic, switching between claret red neutral state, a gray and a red intermediate state, and a blue oxidized state. Switching time of the polymers was evaluated by a kinetic study upon measuring the percent transmittance (%T) at the maximum contrast point. Dual type polymer electrochromic devices (ECDs) based on P(DTAT-co-EDOT) with poly(3,4-ethylenedioxythiophene) (PEDOT) were constructed. Spectroelectrochemistry and electrochromic switching of the device was studied. They were found to have good switching times and reasonable contrasts.
Subject Keywords
Chemistry.
,
Physical and Thoretical Chemistry.
URI
http://etd.lib.metu.edu.tr/upload/12609623/index.pdf
https://hdl.handle.net/11511/18170
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
CHARACTERIZATION OF SILICA CATALYST SUPPORTS BY SINGLE AND MULTIPLE-QUANTUM PROTON NMR-SPECTROSCOPY
HWANG, SJ; Üner, Deniz; KING, TS; PRUSKI, M; GERSTEIN, BC (American Chemical Society (ACS), 1995-03-16)
Cab-O-Sil HS5, used as the support in silica supported ruthenium (Ru/SiO2) catalysts, was characterized via single and multiple quantum (MQ) H-1 NMR spectroscopy. The samples were studied both in the presence and in the absence of ruthenium. Single quantum spin counting of protons on silica support with and without ruthenium metal indicated that the total number of hydroxyl groups decreased significantly with increasing reduction temperature over the range of 350-530 degrees C. Two different components show...
Synthesis of ferrocenyl quinolines
Zora, Metin (Elsevier BV, 2008-06-01)
A convenient one-pot synthesis of ferrocenyl-substituted quinolines via a molecular iodine-catalyzed reaction of ferrocenylimines with enolizable aldehydes is reported. First, nucleophilic addition of the in situ generated enol to ferrocenylimine produces beta-anilinopropionaldehyde, which then undergoes intramolecular Friedel-Crafts reaction to give dihydroquinoline derivative. Finally, subsequent dehydration and aerobic oxidation affords ferrocenyl quinolines.
Synthesis of novel norephedrine-based chiral ligands with multiple stereogenic centers and their application in enantioselective addition of diethylzinc to aldehyde and chalcone
Unaleroglu, C; Aydin, AE; Demir, Ayhan Sıtkı (Elsevier BV, 2006-03-06)
Novel norephedrine-based chiral ligands with multiple stereogenic centers were conveniently prepared from norephedrine and N-substituted pyrrole. These novel chiral ligands were used to catalyze the enantioselective addition of diethylzinc to aldehydes and to chalcone in high yields and with good to high enantioselectivities. The absolute configuration of products was found to be affected by the stereogenic centers on the norephedrine part of the novel chiral ligands.
Synthesis of ferrocenyl pyrazoles by the reaction of (2-formyl-1-chlorovinyl)ferrocene with hydrazines
Zora, Metin (Elsevier BV, 2007-10-15)
Synthesis of ferrocenyl-substituted pyrazoles via the reaction between (2-formyl-1-chlorovinyl)ferrocene and hydrazine derivatives is described. Depending upon the substitution pattern of hydrazine, the reaction affords 1-alkyl/aryl-5-ferrocenylpyrazoles and/or 1-alkyl/ aryl-3-ferrocenylpyrazoles. The reaction appears to be general for a variety of hydrazine derivatives.
Synthesis and Characterization of Conducting Copolymers of Thiophene Derivatives
Turac, Ersen; Sahmetlioglu, Ertugrul; Toppare, Levent Kamil (2014-01-01)
Electrochemical copolymerizations of N1,N2-bis(thiophen-3-ylmethylene)benzene-1,2-diamine (TMBD), 4-methyl-N1,N2-bis (thiophen-3-ylmethylene)benzene-1,2-diamine (MTMBD) and 4-nitro-N1,N2-bis(thiophen-3-ylmethylene)benzene-1,2-diamine (NTMBD) with 3,4-ethylenedioxy thiophene (EDOT) were carried out in CH3CN/LiClO4 (0.1M) solvent-electrolyte couple via potentiodynamic electrolysis. The resulting copolymers were characterized by cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR), scanning ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. G. Yıldırım, “Synthesis of a new conducting polymer based on functionalized anthracene and its uses as an electrochromic device component,” M.S. - Master of Science, Middle East Technical University, 2008.