Cfar detection in k-distributed sea clutter

Download
2008
Çetin, Ayşin
Conventional fixed threshold detectors set a fixed threshold based on the overall statistical characteristics of the spatially uniform clutter over all ranges to give a specific probability of false alarm and detection. However, in radar applications clutter statistics are not known a priori. Constant False Alarm Rate (CFAR) techniques provide an adaptive threshold to estimate the clutter statistics and to distinguish targets from clutter. In Cell Averaging CFAR (CA-CFAR) the threshold is controlled by averaging the fixed size CFAR cells surrounding the cell under test. In this thesis, radar detection of targets in sea clutter modelled by compound Kdistribution is examined from a statistical detection viewpoint by Monte Carlo simulations. The performance of CA-CFAR processors is analysed under varying conditions of sea clutter spatial correlation and spikiness for several cases of false alarm probability, the length of cell size used in the CFAR processor and the number of pulses integrated prior to CA-CFAR processor. v The detection performance of CA-CFAR is compared with the performance of fixed threshold detection. The performance evaluations are quantified by CFAR loss. CFAR loss is defined as the increase in average signal to clutter ratio compared to that of fixed threshold, required to achieve a given probability of detection and probability of false alarm. Curves for CFAR loss to the spikiness and spatial correlation of clutter, number of pulses integrated and the length of cell size are presented.

Suggestions

Radar pulse repetition interval tracking with kalman filter
Avcu, Soner; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2006)
In this thesis, the radar pulse repetition interval (PRI) tracking with Kalman Filter problem is investigated. The most common types of PRIs are constant PRI, step (jittered) PRI, staggered PRI, sinusoidally modulated PRI. This thesis considers the step (this type of PRI agility is called as constant PRI when the jitter on PRI values is eliminated) and staggered PRI cases. Different algorithms have been developed for tracking step and staggered PRIs cases. Some useful simplifications are obtained in the alg...
Radar target detection in non-gaussian clutter
Doyuran, Ülkü; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2007)
In this study, novel methods for high-resolution radar target detection in non-Gaussian clutter environment are proposed. In solution of the problem, two approaches are used: Non-coherent detection that operates on the envelope-detected signal for thresholding and coherent detection that performs clutter suppression, Doppler processing and thresholding at the same time. The proposed non-coherent detectors, which are designed to operate in non-Gaussian and range-heterogeneous clutter, yield higher performanc...
Multi-frequency contactless electrical impedance imaging using realistic head models : single coil simulations
Gürsoy, Doğa; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2007)
Contactless electrical impedance imaging technique is based upon the measurement of secondary electromagnetic fields caused by induced currents inside the body. In this study, a circular single-coil is used as a transmitter and a receiver. The purpose of this study is twofold: (1) to solve the induced current density distribution inside the realistic head model resulting from a sinusoidal excitation, (2) to calculate the impedance change of the same coil from the induced current distribution inside the head...
Tracker-aware detection : a theoretical and an experimental study
Aslan, Murat Şamil; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2009)
A promising line of research attempts to bridge the gap between detector and tracker by means of considering jointly optimal parameter settings for both of these subsystems. Along this fruitful path, this thesis study focuses on the problem of detection threshold optimization in a tracker-aware manner so that a feedback from the tracker to the detector is established to maximize the overall system performance. Special emphasis is given to the optimization schemes based on two non-simulation performance pred...
CFAR processing with switching exponential smoothers for nonhomogeneous environments
GURAKAN, Berk; Candan, Çağatay; Çiloğlu, Tolga (2012-05-01)
Conventional constant false alarm rate (CFAR) methods use a fixed number of cells to estimate the background variance. For homogeneous environments, it is desirable to increase the number of cells, at the cost of increased computation and memory requirements, in order to improve the estimation performance. For nonhomogeneous environments, it is desirable to use less number of cells in order to reduce the number of false alarms around the clutter edges. In this work, we present a solution with two exponentia...
Citation Formats
A. Çetin, “Cfar detection in k-distributed sea clutter,” M.S. - Master of Science, Middle East Technical University, 2008.