Tracker-aware detection : a theoretical and an experimental study

Download
2009
Aslan, Murat Şamil
A promising line of research attempts to bridge the gap between detector and tracker by means of considering jointly optimal parameter settings for both of these subsystems. Along this fruitful path, this thesis study focuses on the problem of detection threshold optimization in a tracker-aware manner so that a feedback from the tracker to the detector is established to maximize the overall system performance. Special emphasis is given to the optimization schemes based on two non-simulation performance prediction (NSPP) methodologies for the probabilistic data association filter (PDAF), namely, the modified Riccati equation (MRE) and the hybrid conditional averaging (HYCA) algorithm. The possible improvements are presented in two domains: Non-maneuvering and maneuvering target tracking. In the first domain, a number of algorithmic and experimental evaluation gaps are identified and newly proposed methods are compared with the existing ones in a unified theoretical and experimental framework. Furthermore, for the MRE based dynamic threshold optimization problem, a closed-form solution is proposed. This solution brings a theoretical lower bound on the operating signal-to-noise ratio (SNR) concerning when the tracking system should be switched to the track before detect (TBD) mode. As the improvements of the second domain, some of the ideas used in the first domain are extended to the maneuvering target tracking case. The primary contribution is made by extending the dynamic optimization schemes applicable to the PDAF to the interacting multiple model probabilistic data association filter (IMM-PDAF). Resulting in an online feedback from the filter to the detector, this extension makes the tracking system robust against track losses under low SNR values.

Suggestions

Implementation and performance evaluation of a three antenna direction finding system
Arslan, Ömer Çağrı; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2009)
State of the art direction finding (DF) systems usually have several antennas in order to increase accuracy and robustness to certain factors. In this thesis, a three antenna DF system is built and evaluated. While more antennas give better DF performance, a three antenna system is useful for system simplicity and many of the problems in DF systems can be observed and evaluated easily. This system can be used for both azimuth and elevation direction of arrival (DOA) estimation. The system is composed of thr...
Time domain scattering from single and multiple objects
Azizoğlu, Süha Alp; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2008)
The importance of the T-matrix method is well-known when frequency domain scattering problems are of interest. With the relatively recent and wide-spread interest in time domain scattering problems, similar applications of the T-matrix method are expected to be useful in the time domain. In this thesis, the time domain spherical scalar wave functions are introduced, translational addition theorems for the time domain spherical scalar wave functions necessary for the solution of multiple scattering problems ...
Improvements in DOA estimation by array interpolation in non-uniform linear arrays
Yaşar, Temel Kaya; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2006)
In this thesis a new approach is proposed for non-uniform linear arrays (NLA) which employs conventional subspace methods to improve the direction of arrival (DOA) estimation performance. Uniform linear arrays (ULA) are composed of evenly spaced sensor elements located on a straight line. ULA's covariance matrix have a Vandermonde matrix structure, which is required by fast subspace DOA estimation algorithms. NLA differ from ULA only by some missing sensor elements. These missing elements cause some gaps in...
Investigation of music algorithm based and wd-pca method based electromagnetic target classification techniques for their noise performances
Ergin, Emre; Sayan, Gönül; Department of Electrical and Electronics Engineering (2009)
Multiple Signal Classification (MUSIC) Algorithm based and Wigner Distribution-Principal Component Analysis (WD-PCA) based classification techniques are very recently suggested resonance region approaches for electromagnetic target classification. In this thesis, performances of these two techniques will be compared concerning their robustness for noise and their capacity to handle large number of candidate targets. In this context, classifier design simulations will be demonstrated for target libraries con...
Modelling of X-Band electromagnetic wave propagation
Pelgur, Ali; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2007)
Calculation of electromagnetic wave propagation over irregular terrain is an important problem in many applications such as coverage calculations for radars or communication links. Many different approaches to this problem may be found in the literature. One of the most commonly used methods to solve electromagnetic boundary value problems is the Method of Moments (MoM). However, especially at high frequencies, the very large number of unknows required in the MoM formulation, limits the applicability of thi...
Citation Formats
M. Ş. Aslan, “Tracker-aware detection : a theoretical and an experimental study,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.