Design and analysis of a linear shape memory alloy actuator

Download
2009
Söylemez, Burcu
Shape memory alloys are new, functional materials used in actuator applications with their high power to weight ratio. The high strength or displacement usage of shape memory alloys makes them suitable for direct drive applications, which eliminate use of power transmission elements. The aim of this research is to develop the methodology and the necessary tools to design and produce linear shape memory alloy actuators to be used in missile systems, space applications, and test equipments. In this study, the test apparatus designed and built to characterize shape memory alloy thin wires is described, and then the characterization tests, modeling and control studies performed on a wire are explained. In the control studies, displacement control through strain, resistance and power feedback is investigated and different control strategies (proportional-integral, proportional-integral with feedforward loop, and neural network) are employed. The results of the characterization tests, simulations and experiments are all presented in graphical and tabular form. From the results it is concluded that through careful characterization, the behavior of SMA wire can be closely approximated through models which can be used effectively to test various control strategies in simulations. Also, satisfactory position control of SMA wires can be achieved through both classical and NN control strategies by using appropriate feedback variables and power is found to be a viable feedback variable. Lastly, a linear SMA wire actuator is designed as a case study. The actuator prototype is produced, suitable control strategies are applied and actuator is experimented to validate the theoretical assumptions. The actuator developed through this work is a technology demonstration and shows that shape memory alloy elements can be utilized in several defense and space applications contracted to TÜBİTAK-SAGE as well as certification test equipments. The development of shape memory alloy actuators that can be used in defense and later in aeronautical/space applications is a critical research and development project for national defense industry.

Suggestions

Investigation of wear behavior of aged and non-aged SiC-reinforced AlSi7Mg2 metal matrix composites in dry sliding conditions
ÇELİK, YAHYA HIŞMAN; Demir, Mehmet Emin; KILIÇKAP, EROL; Kalkanlı, Ali (Springer Science and Business Media LLC, 2020-01-01)
Metal matrix composites (MMCs) with their splendid mechanical properties have been specifically designed for use in fields such as aerospace and aviation. The presence of hard ceramic particles in MMC increases the hardness of the matrix product and decreases its coefficient of friction. Therefore, the wear resistance is improved. Moreover, the mechanical properties of these composite materials can be improved by applying heat treatments. In this study, AlSi7Mg2 MMCs with 15 wt% SiC reinforcement were produ...
Analysis of heat treatment effect on springback in v-bending
Sarıkaya, Onur Turgay; Darendeliler, Haluk; Department of Mechanical Engineering (2008)
Aluminum based alloys have wide area of usage in automotive and defense industry and bending processes are frequently applied during production. One of the most important design criteria of bending processes is springback, which can be basically defined as elastic recovery of the part during unloading. To overcome this problem, heat treatment is generally applied to the workpiece material to refine tensile properties. In this study, the effect of heat treatment on springback characteristics of aluminum stud...
An accelerated aerodynamic optimization approach for a small turbojet engine centrifugal compressor
Ceylanoğlu, Arda; Ulaş, Abdullah; Department of Mechanical Engineering (2009)
Centrifugal compressors are widely used in propulsion technology. As an important part of turbo-engines, centrifugal compressors increase the pressure of the air and let the pressurized air flow into the combustion chamber. The developed pressure and the flow characteristics mainly affect the thrust generated by the engine. The design of centrifugal compressors is a challenging and time consuming process including several tests, computational fluid dynamics (CFD) analyses and optimization studies. In this s...
Modeling and simulation of oil leakage in radial lip seals
Yıldız, Meltem; Akkök, Metin; Department of Mechanical Engineering (2010)
Radial lip seals are used to prevent leakage between machine elements in many industrial applications. During operation, fluid film between seal lip and shaft surface generates a pressure distribution on the lip which is elastically deformed due to hydrodynamic pressure. Surface roughness parameters in terms of moments of height profile distribution (rms roughness, skewness and kurtosis) affect the rate of oil leakage. A computer program is developed for elastohydrodynamic analysis of radial lip seals. Both...
Validation of MISES Two-Dimensional Boundary Layer Code for High-Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (ASME International, 2009-07-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed-one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a bounda...
Citation Formats
B. Söylemez, “Design and analysis of a linear shape memory alloy actuator,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.