An accelerated aerodynamic optimization approach for a small turbojet engine centrifugal compressor

Download
2009
Ceylanoğlu, Arda
Centrifugal compressors are widely used in propulsion technology. As an important part of turbo-engines, centrifugal compressors increase the pressure of the air and let the pressurized air flow into the combustion chamber. The developed pressure and the flow characteristics mainly affect the thrust generated by the engine. The design of centrifugal compressors is a challenging and time consuming process including several tests, computational fluid dynamics (CFD) analyses and optimization studies. In this study, a methodology on the geometry optimization and CFD analyses of the centrifugal compressor of an existing small turbojet engine are introduced as increased pressure ratio being the objective. The purpose is to optimize the impeller geometry of a centrifugal compressor such that the pressure ratio at the maximum speed of the engine is maximized. The methodology introduced provides a guidance on the geometry optimization of centrifugal impellers supported with CFD analysis outputs. The original geometry of the centrifugal compressor is obtained by means of optical scanning. Then, the parametric model of the 3-D geometry is created by using a CAD software. A design of experiments (DOE) procedure is applied through geometrical parameters in order to decrease the computation effort and guide through the optimization process. All the designs gathered through DOE study are modelled in the CAD software and meshed for CFD analyses. CFD analyses are carried out to investigate the resulting pressure ratio and flow characteristics. The results of the CFD studies are used within the Artificial Neural Network methodology to create a fit between geometric parameters (inputs) and the pressure ratio (output). Then, the resulting fit is used in the optimization study and a centrifugal compressor with higher pressure ratio is obtained by following a single objective optimization process supported by design of experiments methodology.

Suggestions

An electronic control unit design for a miniature jet engine
Polat, Cuma; Dölen, Melik; Department of Mechanical Engineering (2010)
Gas turbines are widely used as power sources in many industrial and transportation applications. This kind of engine is the most preferred prime movers in aircrafts, power plants and some marine vehicles. They have different configurations according to their mechanical constructions such as turbo-prop, turbo-shaft, turbojet, etc. These engines have different efficiencies and specifications and some advantages and disadvantages compared to Otto-Cycle engines. In this thesis, a small turbojet engine is inves...
Validation of MISES Two-Dimensional Boundary Layer Code for High-Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (ASME International, 2009-07-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed-one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a bounda...
Investigation of wear behavior of aged and non-aged SiC-reinforced AlSi7Mg2 metal matrix composites in dry sliding conditions
ÇELİK, YAHYA HIŞMAN; Demir, Mehmet Emin; KILIÇKAP, EROL; Kalkanlı, Ali (Springer Science and Business Media LLC, 2020-01-01)
Metal matrix composites (MMCs) with their splendid mechanical properties have been specifically designed for use in fields such as aerospace and aviation. The presence of hard ceramic particles in MMC increases the hardness of the matrix product and decreases its coefficient of friction. Therefore, the wear resistance is improved. Moreover, the mechanical properties of these composite materials can be improved by applying heat treatments. In this study, AlSi7Mg2 MMCs with 15 wt% SiC reinforcement were produ...
Computerized test procedure for industrial radiographic examination of metallic welded joints
Güneş, E. Evren; Doyum, Bülent; Department of Mechanical Engineering (2004)
Radiography is an extensively used NDT method, especially in nuclear, aerospace and automotive industries where optimal designs call for greater reliability. The rules corresponding to industrial radiography are defined in a system of radiographic standards. The standards related to the radiographic testing of metallic welded joints had been harmonised in all over the Europe and at the end in 1997, the standard "EN 1435" was established and published. Since then, this standard has become the most widely use...
Storage reliability analysis of solid rocket propellants
Hasanoğlu, Mehmet Sinan; Dağ, Serkan; Department of Mechanical Engineering (2008)
Solid propellant rocket motor is the primary propulsion technology used for short and medium range missiles. It is also commonly used as boost motor in many di_erent applications. Its wide spread usage gives rise to diversity of environments in which it is handled and stored. Ability to predict the storage life of solid propellants plays an important role in the design and selection of correct protective environments. In this study a methodology for the prediction of solid propellant storage life using cumu...
Citation Formats
A. Ceylanoğlu, “An accelerated aerodynamic optimization approach for a small turbojet engine centrifugal compressor,” M.S. - Master of Science, Middle East Technical University, 2009.