Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Forecasting of ionospheric electron density trough for characterization of aerospace medium
Download
index.pdf
Date
2009
Author
Kocabaş, Zeynep
Metadata
Show full item record
Item Usage Stats
214
views
113
downloads
Cite This
Modeling the ionosphere, where the effects of solar dynamo becomes more effective to space based and ground borne activities, has an undeniable importance for telecommunication and navigation purposes. Mid-latitude electron density trough is an interesting phenomenon in characterizing the behavior of the ionosphere, especially during disturbed conditions. Modeling the mid-latitude electron density trough is a very popular research subject which has been studied by several researchers until now. In this work, an operational technique has been developed for a probabilistic space weather forecast using fuzzy modeling and computer based detection of trough in two steps. First step is to detect the appropriate geomagnetical conditions for trough formation, depending on the values of 3-h planetary K index (Kp), magnetic season, latitude and local time, by using fuzzy modeling technique. Once the suitable geomagnetic conditions are detected, second step is to find the lower latitude position (LLP) and minimum position (MP) of the observed trough being two main identifiers of the mid-latitude electron density trough. A number of case studies were performed on ARIEL 4 satellite data, composed of different geomagnetic, annual and diurnal characteristics. The results obtained from fuzzy modeling show that the model is able to detect the appropriate conditions for trough occurrence and the trough shape was effectively identified for each selected case by using the predefined descriptions of mid-latitude electron density trough. The overall results are observed to be promising.
Subject Keywords
Aerospace engineering.
,
Aeronautical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12610445/index.pdf
https://hdl.handle.net/11511/18419
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
ATTITUDE CONTROL OF AN EARTH ORBITING SOLAR SAIL SATELLITE TO PROGRESSIVELY CHANGE THE SELECTED ORBITAL ELEMENT
Atas, Omer; Tekinalp, Ozan (2015-01-15)
Solar sailing where the radiation pressure from Sun is utilized to propel the spacecraft is examined in the context of orbital maneuvers. In this vein a locally optimal steering law to progressively change the selected orbital elements, without considering others, of an Earth centered Keplerian orbit of a cubesat satellite with solar sail is addressed. The proper attitude maneuver mechanization is proposed to harvest highest solar radiation force in the desired direction for such Earth orbiting satellites. ...
Development of control allocation methods for satellite attitude control
Elmas, Tuba Çiğdem; Tekinalp, Ozan; Department of Aerospace Engineering (2010)
This thesis addresses the attitude control of satellites with similar and dissimilar actuators and control allocation methods on maneuvering. In addition, the control moment gyro (CMG) steering with gyroscopes having limited gimbal angle travel is also addressed. Full Momentum envelopes for a cluster of four CMG's are obtained in a pyramid type mounting arrangement. The envelopes when gimbal travel is limited to plus-minus 90 degree are also obtained. The steering simulations using Moore Penrose (MP) pseudo...
Experimental and numerical investigation of flow field around flapping airfoils making figure-of-eight in hover
Başkan, Özge; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2009)
The aim of this study is to investigate the flow field around a flapping airfoil making figure-of-eight motion in hover and to compare these results with those of linear flapping motion. Aerodynamic characteristics of these two-dimensional flapping motions are analyzed in incompressible, laminar flow at very low Reynolds numbers regime using both the numerical (Computational Fluid Dynamics, CFD) and the experimental (Particle Image Velocimetry, PIV) tools. Numerical analyses are performed to investigate the...
Assessment of an iterative approach for solution of frequency domain linearized euler equations for noise propagation through turbofan jet flows
Dizemen, İlke Evrim; Yörükoğlu, Yusuf; Department of Aerospace Engineering (2007)
This study, explores the use of an iterative solution approach for the linearized Euler equations formulated in the frequency domain for fan tone noise propagation and radiation through bypass jets. The aim is to be able to simulate high frequency propagation and radiation phenomena with this code, without excessive computational resources. All computations are performed in parallel using MPI library routines on a computer cluster. The linearized Euler equations support the Kelvin-Helmholtz type convective ...
Design and analysis of a mode-switching micro unmanned aerial vehicle
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (SAGE Publications, 2016-12-01)
In this study, design and analysis of a mode-switching vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) with level flight capability is considered. The design of the platform includes both multirotor and fixed-wing (FW) conventional airplane structures; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles including post-stall conditions. Trim conditions are obtained by solving constrained optimization problems. Linear analysis techniques are utilized for trim ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Kocabaş, “Forecasting of ionospheric electron density trough for characterization of aerospace medium,” M.S. - Master of Science, Middle East Technical University, 2009.