Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Assessment of an iterative approach for solution of frequency domain linearized euler equations for noise propagation through turbofan jet flows
Download
index.pdf
Date
2007
Author
Dizemen, İlke Evrim
Metadata
Show full item record
Item Usage Stats
267
views
273
downloads
Cite This
This study, explores the use of an iterative solution approach for the linearized Euler equations formulated in the frequency domain for fan tone noise propagation and radiation through bypass jets. The aim is to be able to simulate high frequency propagation and radiation phenomena with this code, without excessive computational resources. All computations are performed in parallel using MPI library routines on a computer cluster. The linearized Euler equations support the Kelvin-Helmholtz type convective physical instabilities in jet shear flows. If these equations are solved directly in frequency domain, the unstable modes may be filtered out for the frequencies of interest. However, direct solutions are memory intensive and the reachable frequency is limited. Results provided shown that iterative solution of LEE is more efficient when considered memory requirement and might solve a wider scope of frequencies, if the instabilities are controlled.
Subject Keywords
Aerospace engineering.
,
Aeronautical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12609095/index.pdf
https://hdl.handle.net/11511/17359
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Estimation of pico-satellite attitude dynamics and external torques via Unscented Kalman Filter
Söken, Halil Ersin (FapUNIFESP (SciELO), 2014-01-01)
In this study, an Unscented Kalman Filter (UKF) algorithm is designed for estimating the attitude of a picosatellite and the in-orbit external disturbance torques. The estimation vector is formed by the satellite's attitude, angular rates, and the unknown constant components of the external disturbance torques acting on the satellite. The gravity gradient torque, residual magnetic moment, sun radiation pressure and aerodynamic drag are all included in the estimated external disturbance torque vector. The sa...
Computational study of subsonic flow over a delta canard-wing-body configuration
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1998-07-01)
Subsonic flowfields over a close-coupled, delta canard-wing-body configuration at angles of attack of 20, 24,2, and 30 deg are computed using the OVERFLOW Navier-Stokes solver Computed flowfields are presented in terms of particle traces, surface streamlines, and leeward-side surface pressure distributions for the canard-on and -off configurations. The interaction between the canard and the wing vortices, wing vortex breakdown, and the influence of the canard on vortex breakdown are identified, The comparis...
Development of a closely coupled approach for solution of static and dynamic aeroelastic problems
Başkut, Erkut; Seber, Güçlü; Department of Aerospace Engineering (2010)
In this thesis a fluid-structure coupling procedure which consists of a commercial flow solver, FLUENT, a finite element structural solver, MSC/NASTRAN, and the coupling interface between the two disciplines is developed in order to solve static and dynamic aeroelastic problems. The flow solver relies on inviscid Euler equations with finite volume discretization. In order to perform faster computations, multiple processors are parallelized. Closely coupled approach is used to solve the coupled field aeroela...
Time-domain calculation of sound propagation in lined ducts with sheared flows
Özyörük, Yusuf (American Institute of Aeronautics and Astronautics (AIAA), 2000-05-01)
A recent application of the time-domain equivalent of the classical acoustic impedance condition, i.e., the particle displacement continuity equation, to numerical simulations of a Bow-impedance tube in the time domain yielded reasonably good results with uniform mean flows. The present paper extends this application to include sheared mean-flow effects on sound propagation over acoustically treated walls. To assess the prediction improvements with sheared flows, especially at relatively high Mach numbers, ...
Near-surface topology of unmanned combat air vehicle planform: Reynolds number dependence
Elkhoury, M; Yavuz, Mehmet Metin; Rockwell, D (American Institute of Aeronautics and Astronautics (AIAA), 2005-09-01)
The Reynolds number dependence of the near-surface flow structure and topology on a representative unmanned combat air vehicle planform is characterized using a technique of high-image-density particle image velocimetry, to complement classical dye visualization. Patterns of streamline topology, including bifurcation lines, as well as contours of streamwise and transverse velocity, surface-normal vorticity, and Reynolds stress correlation, all immediately adjacent to the surface of the planform, provide qua...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. E. Dizemen, “Assessment of an iterative approach for solution of frequency domain linearized euler equations for noise propagation through turbofan jet flows,” M.S. - Master of Science, Middle East Technical University, 2007.