Development of a control strategy for road vehicles with semi-active suspensions using a full vehicle ride model

Erdoğan, Zeynep
The main motivation of this study is the design of a control strategy for semi-active vehicle suspension systems to improve ride comfort for road vehicles. In order to achieve this objective, firstly the damping characteristics of Magnetorheological dampers will be reviewed. Then an appropriate semi-active control strategy manipulating the inputs of the dampers to create suitable damping forces will be designed. Linear Quadratic Regulator (LQR) control strategy is the primary focus area on semi-active control throughout this study. Further, skyhook controllers are examined and compared with optimal LQR controllers. The semi-active controller is tuned using a linearized full (4 wheel) vehicle ride model with seven degrees of freedom. Some selected simulations are carried out by using a nonlinear model to tune LQR controller in an effort to optimize bounce, pitch, and roll motion of the vehicle. Time domain simulations and frequency response analysis are used to justify the effectiveness of the proposed LQR control strategy.


Design and simulation of an ABS for an integrated active safety system for road vehicles
Şahin, Murat; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2007)
Active safety systems for road vehicles have been improved considerably in recent years along with technological advances and the increasing demand for road safety. In the development route of active safety systems which started with introduction of digital controlled ABS in the late seventies, vehicle stability control systems have been developed which today, with an integration approach, incorporate ABS and other previously developed active safety technologies. ABS, as a main part of this new structure, s...
Analysis of high-g camera support structure for crash test system
Erdoğdu, Mahmut Gökhan; Gökler, Mustafa İlhan; Department of Mechanical Engineering (2009)
Sled Crash Test System is one of the key elements in todays high safety vehicle designs. In the crash test systems, high speed imaging by high speed cameras is required. For the success of high speed imaging, high speed cameras should be well secured on the sled of the system which is being accelerated to high-g values to simulate vehicle crash. In this study, structural analysis of the high – g camera support structure for the sled crash test sytem which is available in METU-BİLTİR Center Vehicle Safety Un...
Validation of MISES Two-Dimensional Boundary Layer Code for High-Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (ASME International, 2009-07-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed-one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a bounda...
Identification of low order vehicle handling models from multibody vehicle dynamics models
Sağlam, Ferhat; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2010)
Vehicle handling models are commonly used in the design and analysis of vehicle dynamics. Especially, with the advances in vehicle control systems need for accurate and simple vehicle handling models have increased. These models have parameters, some of which are known or easily obtainable, yet some of which are unknown or difficult to obtain. These parameters are obtained by system identification, which is the study of building model from experimental data. In this thesis, identification of vehicle handlin...
Design and simulation of a traction control system for an integrated active safety system for road vehicles
Oktay, Görkem; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2008)
Active safety systems for road vehicles make a crucial preventive contribution to road safety. In recent years, technological developments and the increasing demand for road safety have resulted in the integration and cooperation of these individual active safety systems. Traction control system (TCS) is one of these individual systems, which is capable of inhibiting wheel-spin during acceleration of the vehicle on slippery surfaces. In this thesis, design methodology and simulation results of a traction co...
Citation Formats
Z. Erdoğan, “Development of a control strategy for road vehicles with semi-active suspensions using a full vehicle ride model,” M.S. - Master of Science, Middle East Technical University, 2009.