Analysis of high-g camera support structure for crash test system

Download
2009
Erdoğdu, Mahmut Gökhan
Sled Crash Test System is one of the key elements in todays high safety vehicle designs. In the crash test systems, high speed imaging by high speed cameras is required. For the success of high speed imaging, high speed cameras should be well secured on the sled of the system which is being accelerated to high-g values to simulate vehicle crash. In this study, structural analysis of the high – g camera support structure for the sled crash test sytem which is available in METU-BİLTİR Center Vehicle Safety Unit is carried out. For the secure connection of the high speed cameras, three different configurations of the camera support structure with different camera positions are analyzed by transient dynamic analysis. The finite element simulations are carried out under the acceleration of 90 g which is the maximum applicable acceleration on the system. After verification of the configurations with the computer simulations, one of the configuration has been tested at the sled test facility of METU-BILTIR Center Vehicle Safety Unit.

Suggestions

Design and simulation of a traction control system for an integrated active safety system for road vehicles
Oktay, Görkem; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2008)
Active safety systems for road vehicles make a crucial preventive contribution to road safety. In recent years, technological developments and the increasing demand for road safety have resulted in the integration and cooperation of these individual active safety systems. Traction control system (TCS) is one of these individual systems, which is capable of inhibiting wheel-spin during acceleration of the vehicle on slippery surfaces. In this thesis, design methodology and simulation results of a traction co...
Design of an advanced composite shell for helicopter pilot helmets
Sünel, Ezgi; Parnas, Kemal Levend; Department of Mechanical Engineering (2012)
This thesis reports on a design study, conducted for an advanced composite helmet shell for helicopter pilots. The helmet shell is expected to provide a level of protection against low velocity impacts with its weight criteria. Therefore, ergonomy, light weight, and the ability to withstand low velocity impact became the main issues for this study. For this purpose, an experimental program has been developed including low velocity impact tests on specimens. The drop height, drop weight, specimen stacking se...
Design and simulation of an ABS for an integrated active safety system for road vehicles
Şahin, Murat; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2007)
Active safety systems for road vehicles have been improved considerably in recent years along with technological advances and the increasing demand for road safety. In the development route of active safety systems which started with introduction of digital controlled ABS in the late seventies, vehicle stability control systems have been developed which today, with an integration approach, incorporate ABS and other previously developed active safety technologies. ABS, as a main part of this new structure, s...
Development of a control strategy for road vehicles with semi-active suspensions using a full vehicle ride model
Erdoğan, Zeynep; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2009)
The main motivation of this study is the design of a control strategy for semi-active vehicle suspension systems to improve ride comfort for road vehicles. In order to achieve this objective, firstly the damping characteristics of Magnetorheological dampers will be reviewed. Then an appropriate semi-active control strategy manipulating the inputs of the dampers to create suitable damping forces will be designed. Linear Quadratic Regulator (LQR) control strategy is the primary focus area on semi-active contr...
Identification of low order vehicle handling models from multibody vehicle dynamics models
Sağlam, Ferhat; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2010)
Vehicle handling models are commonly used in the design and analysis of vehicle dynamics. Especially, with the advances in vehicle control systems need for accurate and simple vehicle handling models have increased. These models have parameters, some of which are known or easily obtainable, yet some of which are unknown or difficult to obtain. These parameters are obtained by system identification, which is the study of building model from experimental data. In this thesis, identification of vehicle handlin...
Citation Formats
M. G. Erdoğdu, “Analysis of high-g camera support structure for crash test system,” M.S. - Master of Science, Middle East Technical University, 2009.