Acoustically induced stress analysis of center fuselage skin panels of a basic training aircraft using statistical energy analysis

Download
2009
Kurtoğlu, İlker
Two sample statistical energy analysis (SEA) models are generated for a section of the fuselage panel of an aircraft, namely the uniform panel model which includes the frames and stringers, and the ribbed panel model in which the frames and stringers are smeared into the skin. Turbulent boundary layer (TBL) excitation is used as the primary acoustic excitation source. Stress levels are estimated from the average velocity data of the panels. The stress results are found comply with those obtained by the AGARD method. Effect of radiation from panels to exterior and interior of the sample skin panel as well as the pressurization of the skin panels are investigated separately to analyze their effects on the stress levels. The method is then used in the analysis of center fuselage skin panels on a basic training aircraft. Two models are generated for the aircraft analysis, namely the complete aircraft model and the simplified model which excludes the wings and the empennage. In addition to TBL, propeller noise is used as the primary acoustic excitation source. The effects of the wings and the empennage on the stress levels in the center fuselage skin panels are also investigated along with the radiation from panels to the exterior and interior of the aircraft and pressurization of the pilot cabin.

Suggestions

Modeling, identification and real time position control of a two-axis gimballed mirror system
Çağatay, Kartal; Platin, Bülent Emre; Department of Mechanical Engineering (2010)
This work focuses on modeling, parameter estimation, and real-time position control of a two axis Gimbaled Mirror System (GMS) which is designed and manufactured to move an IR spot generated by an Infra Red Scene Generator System (IRSGS) in two orthogonal axes (elevation and azimuth) within the IR scene which is also generated by the IRSGS. Mathematical models of the GMS, the control system, and the disturbance torque originated from the movements of Flight Motion Simulator (FMS), on which the IRSGS will be...
Transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites
Şen, Özge; Turhan, Doğan; Department of Engineering Sciences (2005)
In this study, transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites is investigated. Thermal effects, in addition to mechanical effects, are taken into consideration. A generalized thermoelasticity theory which incorporates the temperature rate among the constitutive variables and is referred to as temperature-rate dependent thermoelasticity theory is employed. This theory predicts finite heat propagation speeds. The body considered in this thesis consists o...
Internal ballistic design optimization of a solid rocket motor
Açık, Sevda; Dursunkaya, Zafer; Department of Mechanical Engineering (2010)
Design process of a solid rocket motor with the objective of meeting certain mission requirements can be specified as a search for a best set of design parameters within the overall design constraints. In order to ensure that the best possible design amongst all achievable designs is being achieved, optimization is required during the design process. In this thesis, an optimization tool for internal ballistic design of solid rocket motors was developed. A direct search method Complex algorithm is used in th...
Implementation of turbulence models into a Navier-Stokes solver
Muşta, Mustafa Nail; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2004)
In order to handle turbulent flow problems, one equation turbulence models are implemented in to a previously developed explicit, Reynolds averaged Navier-Stokes solver. Discretization of Navier-Stokes solver is based on cell-vertex finite volume formulation combined with single step Lax-Wendroff numerical method which is second order accurate in space. Turbulent viscosity is calculated by using one equation Spalart-Allmaras and Baldwin-Barth turbulence transport equations. For the discretization of Spalart...
Computer aided engineering of an unmanned underwater vehicle
Cevheri, Necmettin; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2009)
Hydrodynamic and thermal analyses performed during the conceptual design of an unmanned underwater vehicle are presented in this study. The hull shape is determined by considering alternative shapes and the dimensions are determined from the internal arrangement of components. Preliminary thermal analyses of the watertight section are performed with a commercial software called FLUENT to check the risk of over-heating due to the heat dissipation of devices. Performance of the proposed hull design is analyze...
Citation Formats
İ. Kurtoğlu, “Acoustically induced stress analysis of center fuselage skin panels of a basic training aircraft using statistical energy analysis,” M.S. - Master of Science, Middle East Technical University, 2009.