Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Detection of airport runways in optical satellite images
Download
index.pdf
Date
2009
Author
Zöngür, Uğur
Metadata
Show full item record
Item Usage Stats
272
views
125
downloads
Cite This
Advances in hardware and pattern recognition techniques, along with the widespread utilization of remote sensing satellites, have urged the development of automatic target detection systems. Automatic detection of airports is particularly essential, due to the strategic importance of these targets. In this thesis, a detection method is proposed for airport runways, which is the most distinguishing element of an airport. This method, which operates on large optical satellite images, is composed of a segmentation process based on textural properties, and a runway shape detection stage. In the segmentation process, several local textural features are extracted including not only low level features such as mean, standard deviation of image intensity and gradient, but also Zernike Moments, Circular-Mellin Features, Haralick Features, as well as features involving Gabor Filters, Wavelets and Fourier Power Spectrum Analysis. Since the subset of the mentioned features, which have a role in the discrimination of airport runways from other structures and landforms, cannot be predicted, Adaboost learning algorithm is employed for both classification and determining the feature subset, due to its feature selector nature. By means of the features chosen in this way, a coarse representation of possible runway locations is obtained, as a result of the segmentation operation. Subsequently, the runway shape detection stage, based on a novel form of Hough Transform, is performed over the possible runway locations, in order to obtain final runway positions. The proposed algorithm is examined with experimental work using a comprehensive data set consisting of large and high resolution satellite images and successful results are achieved.
Subject Keywords
Electrical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12610757/index.pdf
https://hdl.handle.net/11511/18581
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Collaborative mobile target imaging in ultra-wideband wireless radar sensor networks
Arık, Muharrem; Akan, Özgür Barış; Department of Electrical and Electronics Engineering (2008)
Wireless sensor networks (WSN) have thus far been used for detection and tracking of static and mobile targets for surveillance and security applications. However, detection and tracking do not suffice for a complete satisfaction of these applications and an accurate target classification. To address this need, among various target classification methods, imaging of target yields the most valuable information. Nevertheless, imaging of mobile targets moving over an area requires networked and collaborative d...
Antenna patterns for detecting slowly moving targets in two channel gmti processing
Yıldırım, Gökhan; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2010)
Ground Moving Target Indicator (GMTI) is a well-known and widely used signal processing method in airborne and spaceborne radars. In airborne radar and GMTI literature, many radar designs and signal processing techniques have been developed to increase the detection and estimation performance under heavy interference conditions. The motion of the aircraft on which the radar is mounted, high altitudes and ranges, targets with low radar cross sections and slowly moving targets complicates the problem of local...
Modelling and noise analysis of closed-loop capacitive sigma-delta mems accelerometer
Boğa, Biter; Külah, Haluk; Department of Electrical and Electronics Engineering (2009)
This thesis presents a detailed SIMULINK model for a conventional capacitive Σ-Δ accelerometer system consisting of a MEMS accelerometer, closed-loop readout electronics, and signal processing units (e.g. decimation filters). By using this model, it is possible to estimate the performance of the full accelerometer system including individual noise components, operation range, open loop sensitivity, scale factor, etc. The developed model has been verified through test results using a capacitive MEMS accelero...
Extraction of buildings in satellite images
Çetin, Melih; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2010)
In this study, an automated building extraction system, which is capable of detecting buildings from satellite images using only RGB color band is implemented. The approach used in this work has four main steps: local feature extraction, feature selection, classification and post processing. There are many studies in literature that deal with the same problem. The main issue is to find the most suitable features to distinguish a building. This work presents a feature selection scheme that is connected with ...
Digital modulation recognition
Erdem, Erem; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2009)
In this thesis work, automatic recognition algorithms for digital modulated signals are surveyed. Feature extraction and classification algorithm stages are the main parts of a modulation recognition system. Performance of the modulation recognition system mainly depends on the prior knowledge of some of the signal parameters, selection of the key features and classification algorithm selection. Unfortunately, most of the features require some of the signal parameters such as carrier frequency, pulse shape,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Zöngür, “Detection of airport runways in optical satellite images,” M.S. - Master of Science, Middle East Technical University, 2009.