Optimal wind bracing systems for multi-storey steel buildings

Uslu, Cafer Harun
Two types of connection are generally considered in the design of steel structures in practice. These are classified as completely rigid (moment) and simple (shear) connections. In theory, completely rigid connections can not undergo rotation and simple connections can not transfer moment. However, in reality rigid connections have a relative flexibility which makes them to rotate and simple connections have some reserve capacity to transfer moments. In many modern design specifications, this fact is realized and another type which is called partially restrained or semi-rigid connection is introduced. These types of connections have got the transfer of some beam moment to column together with shear. However, there is a lack of information on the amount of moment transferred and rotation of connection during the action of the moment transfer. The only way to quantify the moment and rotation of the partially restrained connections is to draw momentrotation curves. Nevertheless, drawing such curves requires great amount of expenses for experiments. Taking these into account, the use of finite elements with the help of increased computational power is one way to obtain moment-rotation curves of connections. Available test results guides the finite element analysis for justifications. So these analyses can be further implemented into design functions. This thesis is intended to conduct 3-D non-linear finite element analyses to compliment with tests results for different types of semi-rigid connections with angles and compare them with mathematical models developed by different researchers.
Citation Formats
C. H. Uslu, “Optimal wind bracing systems for multi-storey steel buildings,” M.S. - Master of Science, Middle East Technical University, 2009.