Hide/Show Apps

Universal command generator for robotics and cnc machinery

Akıncı, Arda
In this study a universal command generator has been designed for robotics and CNC machinery. Encoding techniques has been utilized in order to represent the commands and their efficiencies have been discussed. The developed algorithm generates the trajectory of the end-effector with linear and circular interpolation in an offline fashion, the corresponding joint states and their error envelopes are computed with the utilization of a numerical inverse kinematic solver with a predefined precision. Finally, the command encoder employs the resulting data and produces the representation of positions in joint space with using proposed encoding techniques depending on the error tolerance for each joint. The encoding methods considered in this thesis are: Lossless data compression via higher order finite difference, Huffman Coding and Arithmetic Coding techniques, Polynomial Fitting methods with Chebyshev, Legendre and Bernstein Polynomials and finally Fourier and Wavelet Transformations. The algorithm is simulated for Puma 560 and Stanford Manipulators for a trajectory in order to evaluate the performances of the above mentioned techniques (i.e. approximation error, memory requirement, number of commands generated). According to the case studies, Chebyshev Polynomials has been determined to be the most suitable technique for command generation. Proposed methods have been implemented in MATLAB environment due to its versatile toolboxes. With this research the way to develop an encoding/decoding standard for an advanced command generator scheme for computer numerically controlled (CNC) machines in the near future has been paved.