Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design, fabrication and implementation of a vibration based mems energy scavenger for wireless microsystems
Download
index.pdf
Date
2008
Author
Sarı, İbrahim
Metadata
Show full item record
Item Usage Stats
227
views
132
downloads
Cite This
This thesis study presents the design, simulation, micro fabrication, and testing steps of microelectromechanical systems (MEMS) based electromagnetic micro power generators. These generators are capable of generating power using already available environmental vibrations, by implementing the electromagnetic induction technique. There are mainly two objectives of the study: (i) to increase the bandwidth of the traditional micro generators and (ii) to improve their efficiency at low frequency environmental vibrations of 1-100 Hz where most vibrations exist. Four main types of generators have been proposed within the scope of this thesis study. The first type of generator is mainly composed of 20 parylene cantilevers on which coils are fabricated, where the cantilevers are capable of resonating with external vibrations with respect to a stationary magnet. This generator has dimensions of 9.5×8×6 mm3, and it has been shown that 0.67 mV of voltage and 56 pW of power output can be obtained from a single cantilever of this design at a vibration frequency of 3.45 kHz. The second type generator aims to increase the bandwidth of the traditional designs by implementing cantilevers with varying length. This generator is sized 14×12.5×8 mm3, and the mechanical design and energy generation concept is similar to the first design. The test results show that by using 40 cantilevers with a length increment of 3 ́m, the overall bandwidth of the generator can be increased to 1000 Hz. It has also been shown that 9 mV of constant voltage and 1.7 nW of constant power output can be obtained from the overall device in a vibration frequency range of 3.5 to 4.5 kHz. The third type is a standard large mass coil type generator that has been widely used in the literature. In this case, the generator is composed of a stationary base with a coil and a magnet-diaphragm assembly capable of resonating with vibrations. The fabricated device has dimensions of 8.5×7×2.5 mm3, and it has been considered in this study for benchmarking purposes only. The test results show that 0.3 mV of voltage and 40 pW of power output can be obtained from the fabricated design at a vibration frequency of 113 Hz. The final design aims to mechanically up-convert low frequency environmental vibrations of 1-100 Hz to a much higher frequency range of 2-3 kHz. This type of generator has been implemented for the first time in the literature. The generator is composed of two parts; a diaphragm-magnet assembly on the top, and 20 cantilevers that have coils connected in series at the base. The diaphragm oscillates by low frequency environmental vibrations, and catches and releases the cantilevers from the tip points where magnetic nickel (Ni) areas are deposited. The released cantilevers then start decaying out oscillations that is at their damped natural frequency of 2-3 kHz. It has been shown with tests that frequency up-conversion is realized in micro scale. The fabricated device has dimensions of 8.5×7×2.5 mm3, and a maximum voltage and power output of 0.57 mV and 0.25 nW can be obtained, respectively, from a single cantilever of the fabricated prototype at a vibration frequency of 113 Hz.
Subject Keywords
Mechanical engineering.
,
Automatic machinery.
URI
http://etd.lib.metu.edu.tr/upload/12610096/index.pdf
https://hdl.handle.net/11511/18002
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Design of advanced motion command generators utilizing FPGA
Yaman, Ulaş; Dölen, Melik; Department of Mechanical Engineering (2010)
In this study, universal motion command generator systems utilizing a Field Programmable Gate Array (FPGA) and an interface board for Robotics and Computer Numerical Control (CNC) applications have been developed. These command generation systems can be classified into two main groups as polynomial approximation and data compression based methods. In the former type of command generation methods, the command trajectory is firstly divided into segments according to the inflection points. Then, the segments a...
Modular embedded system design / implementation for mechatronic education and research
Nursal, Ali Özgü; Koku, Ahmet Buğra; Department of Mechanical Engineering (2007)
In this thesis a modular embedded system for Mechatronics education and research is designed and implemented. Four types of control boards are manufactured and related software is developed at board and PC level. A star like topology is used for boards architecture. One bridge board is responsible for handling communication between the PC and all the other boards that are connected independently to that bridge board. For PC communication Universal Seial Bus (USB), for inter peripheral communication serial p...
Modeling and simulation of a maneuvering ship
Pakkan, Sinan; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
This thesis documents the studies conducted in deriving a mathematical model representing the dynamics of a maneuvering ship to be implemented as part of an interactive real-time simulation system, as well as the details and results of the implementation process itself. Different effects on the dynamics of ship motions are discussed separately, meaning that the effects are considered to be applied to the system one at a time and they are included in the model simply by the principle of superposition. The mo...
Universal command generator for robotics and cnc machinery
Akıncı, Arda; Dölen, Melik; Department of Mechanical Engineering (2009)
In this study a universal command generator has been designed for robotics and CNC machinery. Encoding techniques has been utilized in order to represent the commands and their efficiencies have been discussed. The developed algorithm generates the trajectory of the end-effector with linear and circular interpolation in an offline fashion, the corresponding joint states and their error envelopes are computed with the utilization of a numerical inverse kinematic solver with a predefined precision. Finally, t...
Identification of handling models for road vehicles
Arıkan, Kutluk Bilge; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2008)
This thesis reports the identification of linear and nonlinear handling models for road vehicles starting from structural identifiability analysis, continuing with the experiments to acquire data on a vehicle equipped with a sensor set and data acquisition system and ending with the estimation of parameters using the collected data. The 2 degrees of freedom (dof) linear model structure originates from the well known linear bicycle model that is frequently used in handling analysis of road vehicles. Physical...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Sarı, “Design, fabrication and implementation of a vibration based mems energy scavenger for wireless microsystems,” Ph.D. - Doctoral Program, Middle East Technical University, 2008.