Effect of preparation and operation parameters on performance of polyethersulfone based mixed matrix gas separation membranes

Karatay, Elif
Membrane processes have been considered as promising alternatives to other competing technologies in gas separation industry. Developing new membrane morphologies are required to improve the gas permeation properties of the membranes. Mixed matrix membranes composing of polymer matrices and distributed inorganic/organic particles are among the promising, developing membrane materials. In this study, the effect of low molecular weight additive (LMWA) type and concentration on the gas separation performance of neat polyethersulfone (PES) membranes and zeolite SAPO-34 containing PES based mixed matrix membranes was investigated. Membranes were prepared by solvent evaporation method and annealed above the glass transition temperature (Tg) of PES in order to remove the residual solvent and erase the thermal history. They were characterized by single gas permeability measurements of H2, CO2, and CH4 as well as scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Various LMWAs were added to the neat PES membrane at a concentration of 4 wt %. Regardless of the type, all of the LMWAs had an anti-plasticization effect on PES gas permeation properties. 2-Hydroxy 5-Methyl Aniline, HMA, was selected among the other LMWAs for parametric study on the concentration effect of this additive. The incorporation of SAPO-34 to PES membranes increased the permeabilities of all gases with a slight loss in selectivities. However, the addition of HMA to PES/SAPO-34 membranes increased the ideal selectivities well above the ideal selectivities of PES/HMA membranes, while keeping the permeabilities of all the gases above the permeabilities of both pure PES and PES/HMA membranes.


Development of different carbon supports for proton exchange membrane fuel cell electrocatalysts
Güvenatam, Burcu; Eroğlu, İnci; Bayrakçeken, Ayşe; Department of Chemical Engineering (2010)
Proton exchange membrane (PEM) fuel cell technology is promissing alternative solution to today’s energy concerns providing clean environment and efficient system. Decreasing platinum (Pt) content of fuel cell is one of the main goals to reduce high costs of fuel cell technology in the way of commercialization. In this target, porous carbons provide an alternative solution as a support material for fuel cell electrocatalysts. It is also essential to increase surface area of carbon support material to have w...
Control and simulation studies for a multicomponent batch packed distillation column
Ceylan, Hatice; Özgen, Canan; Department of Chemical Engineering (2007)
During the last decades, batch distillation is preferably used with an increasing demand over continuous one, to separate fine chemicals in chemical and petroleum industries, due to its advantages like, flexibility and high product purity. Consequently, packed distillation columns, with newly generated packing materials, are advantageous compared to plate columns because of their smaller holdups, resistivity to corrosive materials and their higher separation efficiencies. Also, in many industrial applicatio...
Bioprocess development for therapeutical protein production
Çelik Akdur, Eda; Çalık, Pınar; Department of Chemical Engineering (2008)
In this study, it was aimed to develop a bioprocess using the Pichia pastoris expression system as an alternative to the mammalian system used in industry, for production of the therapeutically important glycoprotein, erythropoietin, and to form stoichiometric and kinetic models. Firstly, the human EPO gene, fused with a polyhistidine-tag and factor-Xa protease target site, in which cleavage produces the native termini of EPO, was integrated to AOX1 locus of P. pastoris. The Mut+ strain having the highest r...
Development of organic-inorganic composite membranes for fuel cell applications
Erdener, Hülya; Baç, Nurcan; Department of Chemical Engineering (2007)
Hydrogen is considered to be the most promising energy carrier of the 21st century due to its high energy density and sustainability. The chemical energy of hydrogen can be directly converted into electricity by means of electrochemical devices called fuel cells. Proton exchange membrane fuel cells (PEMFC) are the most preferred type of fuel cells due to their low operating temperatures enabling fast and easy start-ups and quick responses to load changes. One of the most important components of a PEMFC is t...
Removal of hydrogen sulfide by regenerable metal oxide sorbents
Karayılan, Dilek; Doğu, Timur; Department of Chemical Engineering (2004)
High-temperature desulfurization of coal-derived fuel gases is an essential process in advanced power generation technologies. It may be accomplished by using metal oxide sorbents. Among the sorbents investigated CuO sorbent has received considerable attention. However, CuO in uncombined form is readily reduced to copper by the H2 and CO contained in fuel gases which lowers the desulfurization efficiency. To improve the performance of CuO-based sorbents, they have been combined with other metal oxides, form...
Citation Formats
E. Karatay, “Effect of preparation and operation parameters on performance of polyethersulfone based mixed matrix gas separation membranes,” M.S. - Master of Science, Middle East Technical University, 2009.