Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Living radical polymerization of hydroxyethyl methacrylate and its block copolymerization with poly(dimethyl siloxane) macroazoinitiator
Download
index.pdf
Date
2009
Author
Vargün, Elif
Metadata
Show full item record
Item Usage Stats
275
views
437
downloads
Cite This
Hydrophilic poly(2-hydroxyethyl methacrylate), PHEMA, and hydrophobic poly(dimethyl siloxane), PDMS, segments containing copolymers have been widely used as a biomaterial. These amphiphilic copolymers also used as an emulsifying agent in polymer solutions and compatibilizer in polymer blends. In this case, solution polymerizations of HEMA by radiation, ATRP and RAFT methods were studied. The thermal degradation mechanism of PHEMA, which was prepared in aqueous solution by gamma radiation technique, was studied in detail. The DSC, TGA and Mass Spectroscopy analyses revealed that the degradation is linkage and depolymerization with a combination of monomer fragmentation. The ATRP of HEMA was performed with ethyl-2-bromoisobutyrate (EBriB) initiator and CuCl/bipyridine catalyst in MEK/1-propanol solvent mixture. Cu(II) complexes and PHEMA obtained via ATRP were characterized by UV-vis, FTIR and 1H-NMR analysis. The RAFT polymerization of HEMA with different [RAFT]/[AIBN] ratios were also investigated in three solvents (methyl ethylketone, ethyl acetate and toluene). The controlled polymerization of HEMA with the ratio of [RAFT]/ [AIBN]=18 at 80 oC in MEK and ethyl acetate, shows the first-order kinetic up to the nearly 40 % conversion Macroazoinitiator PDMS-MAI was synthesized from bifunctional PDMS and then copolymerized with MMA, EMA, HEMA and TMS-HEMA monomers Different characterization methods such as FTIR, 1H-NMR, solid state NMR, GPC, XPS, SEM, DSC, etc. have been used for the characterization of block copolymers. P(DMS-b-TMSHEMA) was converted to the P(DMS-b-HEMA) block copolymer by deprotection of TMS groups. The phase separated morphology was observed for the P(DMS-b-HEMA) copolymer, which was different from P(DMS-b-MMA) and P(DMS-b-EMA) copolymers.
Subject Keywords
Polymers.
,
Polymerization.
URI
http://etd.lib.metu.edu.tr/upload/3/12610605/index.pdf
https://hdl.handle.net/11511/18751
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Hydrologel from template polymerization of methacrylic acid and n-vinylpyrollidone and polyethleneoxide
Erdem, Yelda; Tinçer, Teoman; Department of Polymer Science and Technology (2005)
This theses covers the preparation and the characterization of a rigid hydrogel from N-Vinyl pyrrolidone-methacrylic acid (VP-MAA) monomers and polyethyleneoxide (PEO) polymer. Hydrogels are hydrophillic natured three dimensional networks which can swell in the presence of water. The VP-MAA-PEO hydrogel was obtained by template polymerization which can be defined as a method of polymer synthesis in which specific interactions consists of the preparation of a polymer (daughter polymer) in the presence of a m...
Electroactive macromonomers based on pyrrole and thiophene: a versatile route to conducting block and graft polymers
Yagci, Y; Toppare, Levent Kamil (Wiley, 2003-10-01)
The synthesis of block and graft copolymers containing insulating and conducting polypyrrole or polythiophene segments via a two-step procedure is described. Synthetic pathways to prepare pyrrole and thiophene functional macromonomers involving conventional and controlled/living polymerizations such as anionic and cationic ring opening, atom transfer radical polymerization are discussed. The use of these macromonomers in subsequent electrochemical and chemical polymerizations, leading to the formation of co...
Pyrolysis mass spectrometric analysis of copolymer of polyacrylonitrile and polythiophene
Oğuz, Gülcan; Hacaloğlu, Jale; Department of Polymer Science and Technology (2004)
In the first part of this work, the structural and thermal characteristics of polyacrylonitrile, polyacrylonitrile films treated under the electrolysis conditions in the absence of thiophene, polythiophene and the mechanical mixture and a conducting copolymer of polyacrylonitrile/polythiophene have been studied by pyrolysis mass spectrometry technique. The thermal degradation of polyacrylonitrile occurs in three steps; evolution of HCN, monomer, low molecular weight oligomers due to random chain cleavages a...
Copolymerization of carbon disulfide, carbon dioxide and other carbonic acid derivatives with cyclic ethers by using metal xanthate catalysts
Öztürk, Elif; Alyürük, Kemal; Department of Polymer Science and Technology (2006)
The synthesis of high molecular weight copolymer of carbon disulphide (CS2) and propylene oxide (PO) has not reported in literature. In the present work, zinc isopropyl xanthate (Zn(Xt)2) was used as catalyst for the copolymerisation of PO and CS2 into high copolymer. However, the product can be fractionated into high and low molecular weight components. High molecular weight copolymer was rubbery products, but low molecular weight copolymers were oily products containing cyclic dithiocarbonates. Copolymers...
Electrochemical synthesis of crowned conducting polymers : nature of radical cations in polymerization and mechanism of conductivity
Cihaner, Atilla; Önal, Ahmet Muhtar; Department of Chemistry (2004)
Poly(dibenzo-18-crown-6) (Poly(DB18C6)) was synthesized by electrochemical oxidation of dibenzo-18-crown-6 (DB18C6) using a mixture of acetonitrile and dichloromethane as solvent and tetrabutylammonium tetrafluoroborate (TBABF4) or tetrabutylammonium hexafluorophosphate (TBAPF6) as supporting electrolyte. The anodic polymerization of DB18C6 was investigated using in-situ ESR and in-situ UV-VIS spectroscopic techniques. Spectroelectrochemical (SPEL) properties and thermal analysis of the resulting polymers h...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Vargün, “Living radical polymerization of hydroxyethyl methacrylate and its block copolymerization with poly(dimethyl siloxane) macroazoinitiator,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.