Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Contributions to the kinetic modeling of glycolytic pathway in yeast
Download
index.pdf
Date
2009
Author
Şahin, Ceylan
Metadata
Show full item record
Item Usage Stats
171
views
101
downloads
Cite This
Being at the center of most metabolic pathways and also one of the best known pathways, the glycolytic pathway has been of interest to modeling studies. This study is composed of our attempts to model ethanolic fermentation by yeast through kinetic equations of glycolytic steps and its branches. Model was based totally on experimentally measured kinetics of enzymes and transport steps, either obtained in this study or from the literature. Effect of ethanol on enzyme activities was tested in the range of ethanol 0 to 20% (v/v) in assay mixture. All enzymes were inhibited by ethanol to some degree and these inhibitions started at different ethanol concentrations, the least affected being the pyruvate kinase and the most inhibited ones being glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, phosphogluco kinase, and alcohol dehydrogenase (forward). Effect of temperature on the activities of enzymes was tested within 10-30 °C with five degrees of increments. Activation energies of enzymes were calculated using the Arrhenius equation. Activation energies of upper part of the glycolysis and the glycerol branch (glycerol-3-phosphate dehydrogenase) were relatively higher than that of lower part enzymes as well as the ethanol branch (alcohol dehydrogenase). Results obtained from these in vitro studies were incorporated into the model as mathematical relations. Model output thus obtained was compared with results of experiments conducted at several temperatures and initial ethanol concentrations. Model could estimate general trend in ethanolic fermentation that fermentation is inhibited by increasing concentrations of ethanol. Decrease in glycerol yields at lower temperatures was also estimated by the model. However, model did not fit exactly to experimental results, especially at low temperature and high ethanol concentrations. This could be attributed to stress responses of cells under these conditions, which are not considered in the model.
Subject Keywords
Biotechnology.
,
Food engineering.
URI
http://etd.lib.metu.edu.tr/upload/3/12610535/index.pdf
https://hdl.handle.net/11511/18796
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Targeted disruption of homoserine dehydrogenase gene and its effect on cephamycin C production in Streptomyces clavuligerus
Yilmaz, Ebru I.; Caydasi, Ayse K.; Özcengiz, Gülay (Springer Science and Business Media LLC, 2008-01-01)
The aspartate pathway of Streptomyces clavuligerus is an important primary metabolic pathway which provides substrates for beta-lactam synthesis. In this study, the hom gene which encodes homoserine dehydrogenase was cloned from the cephamycin C producer S. clavuligerus NRRL 3585 and characterized. The fully sequenced open reading frame encodes 433 amino acids with a deduced M (r) of 44.9 kDa. The gene was heterologously expressed in the auxotroph mutant Escherichia coli CGSC 5075 and the recombinant protei...
Current applications of exopolysaccharides from lactic acid bacteria in the development of food active edible packaging
Moradi, Mehran; Guimarães, Jonas T; Şahin, Serpil (Elsevier BV, 2021-08-01)
The lactic acid bacteria (LAB) are usually recognized as safe for consumption and comprise several genera with different technological and health-promoting potential for food applications, including probiotic characteristics. Their exopolysaccharides (EPS) have interesting film-forming properties and may be used to produce edible packaging, as a structural enhancer, a bioactive agent or probiotic carrier in edible films and coatings. In these days, there is a specific demand for food products with reduced a...
Computational modeling of cardiac tissue with strongly coupled electromechanics and orthotropic viscoelastic effects
Cansiz, Baris; Dal, Hüsnü; Kaliske, Michael (2014-03-14)
Modeling of complex mechanisms leading to the functioning of the heart has been an active field of research since decades. Difficulties associated with in vivo experiments motivate the utilization of computational models in order to gain a better appreciation of heart electromechanics. Although rate dependent behaviour of the orthotropic passive heart tissue has been comprehensively studied in the literature [1], effects of this phenomenon on fully coupled cardiac electromechanics are unrevealed yet. Theref...
Enzyme immobilization on titania-silica-gold thin films for biosensor applications and photocatalytic enzyme removal for surface patterning
Çınar, Merve; Bakır, Ufuk; Department of Chemical Engineering (2009)
The aim of this study was to investigate the viability of patterning by immobilization, photocatalytic removal, and re-immobilization steps of the enzyme on photocatalytically active thin films for biosensor fabrication purposes. For this aim, TiO2-SiO2-Au sol-gel colloids were synthesized and deposited on glass substrates as thin films by dip coating. Cysteamine linker was assembled on gold nanoparticles to functionalize thin films with amine groups for immobilization of model enzyme invertase. Effect of i...
Design of intelligent nanoparticles for use in controlled release
Bayyurt, Banu; Hasırcı, Vasıf Nejat; Department of Biotechnology (2009)
The aim of this project was to design an intelligent controlled release system based on thermoresponsive nanoparticles for cancer therapy and to evaluate the efficiencies of these systems with in vitro cell culture. Poly(Nisopropylacrylamide), an important thermoresponsive polymer, was selected for this study to prepare the responsive nanoparticles. This polymer has an lower critical solution temperature (LCST) of 32 oC, below which it is hydrophilic and above this temperature, it shows hydrophobic behavior...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Şahin, “Contributions to the kinetic modeling of glycolytic pathway in yeast,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.