Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comparison of axial flux and radial flux brushless dc motor topologies for control moment gyroscope wheel applications
Download
index.pdf
Date
2009
Author
Yılmaz, Kurtuluş
Metadata
Show full item record
Item Usage Stats
279
views
1267
downloads
Cite This
In this thesis axial flux and radial flux brushless dc motors will be studied as a drive motor for the control of moment gyroscope wheel. Design equations for axial flux and radial flux brushless dc motor topologies will be reviewed. Based on these equations radial and axial flux motors with different number of poles will be designed that meet control moment gyroscope wheel application requirements. The results will be evaluated in terms of efficiency, torque/mass and torque/volume, and suitability for the control moment gyroscope application.
Subject Keywords
Electrical engineering.
,
Dynamoelectric Machinery and Auxiliaries.
URI
http://etd.lib.metu.edu.tr/upload/12610565/index.pdf
https://hdl.handle.net/11511/18819
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Speed sensorless vector control of induction motor drive
Özçelik, Eray; Ersak, Aydın; Department of Electrical and Electronics Engineering (2005)
Focus of this work is closed-loop speed control of an induction machine based on direct field-oriented control (DFOC) algorithm, using estimates of speed and flux observers which utilize only stator current and voltage. Theoretical bases of the algorithms are explained in detail and their performances are investigated with simulations and experiments. Field Orientated Control is based on projections which transform a threephase time and speed dependent system into a two co-ordinate time invariant system. Th...
Development of an electrical machines analysis and optimum design software package
Göynük, Yılmaz; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2008)
In this study, three different programs are developed for the analysis of the three-phase induction motor, single-phase capacitor type induction motor and switched reluctance motor. The programs are developed by using Pascal and C++ programming languages. In the performance calculations of motors, analytical methods are used and these methods are tested for accuracy. These programs have also capabilities to design an optimum motor, which meets a set of performance, material and manufacturing constraints whi...
Common mode voltage and current reduction in voltage source inverter driven three phase ac motors
Ün, Emre; Hava, Ahmet Masum; Department of Electrical and Electronics Engineering (2007)
In this thesis various reduced common mode voltage (RCMV) pulse width modulation (PWM) techniques and active/passive common mode voltage (CMV) reduction methods for voltage source inverter driven three-phase AC motors are theoretically and practically investigated. A novel RCMV-PWM method, the near state PWM (NSPWM) method is proposed for operation at high modulation index. At low modulation index, a modified version of an existing RCMV-PWM method, AZSPWM1, termed as MAZSPWM, is proposed to mitigate the vol...
Evaluation of a 6 pole axial flux PM motor for Control Moment Gyroscope Application
Zeinali, Raza; Ertan, Hulusi Bülent (2015-09-04)
In a previous study a compact Control Moment Gyroscope (GMC) design, based on a 6-pole, axial flux (AF) motor was presented. The GMC design in that proposal was based on analytical expressions and naturally 3-D structure of the AF motor could not be fully taken into account. In this paper the designed motor is simulated using 3-D FEM solutions. The parameters of the design such as electric loading and current loading as well as the performance of the design such as phase current and the torque produced at 1...
Comparison of performance of switched reluctance motors, induction motors and permanent magnet dc motors
Karacan, Cüneyt; Üçtuğ, Yıldırım; Department of Electrical and Electronics Engineering (2004)
Since most of the electrical energy is consumed by the electrical motors, it is necessary to use the electrical energy as efficient as possible. Throughout this study four different types of motors (induction motor, permanent magnet radial flux DC motor, permanent magnet axial flux DC motor, switched reluctance motor) are considered and compared based on their torque per unit volume and speed performance comparison. Torque per unit volume equations are obtained for each of the motor, related to quantities s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Yılmaz, “Comparison of axial flux and radial flux brushless dc motor topologies for control moment gyroscope wheel applications,” M.S. - Master of Science, Middle East Technical University, 2009.