Hide/Show Apps

Data mining methods for clustering power quality data collected via monitoring systems installed on the electricity network

Güder, Mennan
Increasing power demand and wide use of high technology power electronic devices result in need for power quality monitoring. The quality of electric power in both transmission and distribution systems should be analyzed in order to sustain power system reliability and continuity. This analysis is possible by examination of data collected by power quality monitoring systems. In order to define the characteristics of the power system and reveal the relations between the power quality events, huge amount of data should be processed. In this thesis, clustering methods for power quality events are developed using exclusive and overlapping clustering models. The methods are designed to cluster huge amount of power quality data which is obtained from the online monitoring of the Turkish Electricity Transmission System. The main issues considered in the design of the clustering methods are the amount of the data, efficiency of the designed algorithm and queries that should be supplied to the domain experts. This research work is fully supported by the Public Research grant Committee (KAMAG) of TUBITAK within the scope of National Power quality Project (105G129).