Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Attitude control of multiple rigid body spacecraft with flexible hinge joints
Download
index.pdf
Date
2009
Author
Akbulut, Burak
Metadata
Show full item record
Item Usage Stats
213
views
139
downloads
Cite This
Control algorithm is developed for a satellite with flexible appendages to achieve a good pointing performance. Detailed modeling activity was carried out that consists of sensor and actuator models, disturbances and system dynamics. Common hardware found in the spacecraft such as reaction wheels, gyroscopes, star trackers etc. were included in the model. Furthermore, the Newton-Euler method is employed for the derivation of multi-body equations of motion. Evaluation of the pointing accuracy with proper pointing performance metrics such as accuracy, jitter and stability during slew maneuvers are obtained through simulations. Control strategies are proposed to improve pointing performance.
Subject Keywords
Mechanical engineering.
,
Astronautics.
URI
http://etd.lib.metu.edu.tr/upload/2/12611079/index.pdf
https://hdl.handle.net/11511/18828
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
ATTITUDE CONTROL OF MULTIPLE RIGID BODY SPACECRAFT WITH FLEXIBLE HINGE JOINTS
Akbulut, Burak; Özgören, Mustafa Kemal; Tekinalp, Ozan (2010-02-18)
Control algorithm is developed for a satellite with flexible appendages to achieve a good pointing performance. Detailed modeling activity was carried out that consists of sensor and actuator models, disturbances and system dynamics. Common hardware found in the spacecraft such as reaction wheels, gyroscopes, star trackers etc. were included in the model. Furthermore, the Newton-Euler method is employed for the derivation of multi-body equations of motion. Proper metrics such as accuracy, jitter and stabili...
Leo satellites: attitude determination and control components; some linear attitude control techniques
Kaplan, Ceren; Kocaoğlan, Erol; Department of Electrical and Electronics Engineering (2006)
In this thesis, application of linear control methods to control the attitude of a Low-Earth Orbit satellite is studied. Attitude control subsystem is first introduced by explaining attitude determination and control components in detail. Satellite dynamic equations are derived and linearized for controller design. Linear controller and linear quadratic regulator are chosen as controllers for attitude control. The actuators used for control are reaction wheels and magnetic torquers. MATLAB-SIMULINK program ...
GPS-Based Real-Time Orbit Determination of Low Earth Orbit Satellites Using Robust Unscented Kalman Filter
Karslıoğlu, Mahmut Onur; Erdogan, Eren; Pamuk, Onur (2017-11-01)
In this research, a novel algorithm for real-time orbit determination (RTOD) is presented using the robust unscented Kalman filter (RUKF) with global positioning system (GPS) group and phase ionospheric correction (GRAPHIC) observables. To increase the reliability of the solution, a robust approach is included in the UKF to cope with the bad, invalid, or degraded measurements leading to the divergence or inaccurate output of the filter. Robustness is provided by making the filter less sensitive to faulty me...
Direction finding with a circularly rotated antenna
Koc, AT; Sen, E; Tanik, Y (2000-06-09)
In this work, a new algorithm for multiple emitter direction finding by using a single antenna moving along a circular trajectory is proposed. The problem is formulated by taking the Doppler frequency shift, caused by the movement of the antenna. into account, and by assuming that the information, hidden in the incoming signals, does not change in the observation duration. The proposed direction finding algorithm is, therefore, based on single snapshot processing and also on the linear prediction method dev...
Singularity robust inverse dynamics of planar 2-RPR parallel manipulators
Ider, SK (SAGE Publications, 2004-07-01)
In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Akbulut, “Attitude control of multiple rigid body spacecraft with flexible hinge joints,” M.S. - Master of Science, Middle East Technical University, 2009.