Design and analysis of an equipment rack structure of a medium transport aircraft

Download
2009
Yalçın, Mehmet Efruz
In this study, equipment rack structure for a medium transport aircraft was designed and finite element analysis of this design was performed. The equipment rack structure, which was designed for a modernization project, was positioned and dimensions were determined by regarding the geometry of primary structures of the aircraft. The structure was designed such that it satisfies the pre-defined margin of safety values. Design of the structure was prepared in Unigraphics, and the finite element modeling and analysis phases were carried out using MSC.Patran and MSC.Nastran programs. For the fastener analysis, which is usually carried out by hand calculations, two analysis tools were prepared by using FORTRAN and Microsoft Office Excel programs. These tools were found to greatly facilitate the analysis and save time. As these tools can be used in other finite element analyses, in which MSC.Patran and MSC.Nastran programs are used, user manuals were prepared.

Suggestions

Design and analysis of a structural component of a heavy transport aircraft
Çıkrıkcı, Davut; Yaman, Yavuz; Department of Aerospace Engineering (2010)
This thesis aims to present the design and analysis of a structural component of a heavy transport aircraft. The designed component is the “coupling“ which is the interface member connecting two frames or two stringers in the fuselage assembly. The “frames”, which are the circumferential stiffeners, are joined together by the “frame couplings”. The “stringers”, which are the longitudinal stiffeners, are joined together by the “stringer couplings”. At the preliminary design phase; the structural design princ...
Structural design, analysis and composite manufacturing applications for a tactical unmanned air vehicle
Soysal, Sercan; Kayran, Altan; Department of Aerospace Engineering (2008)
In this study structural design, analysis and composite manufacturing applications for a tactical UAV, which was designed and manufactured in Aerospace Engineering Department of Middle East Technical University (METU), is introduced. In order to make an accurate structural analysis, the material and loading is modeled properly. Computational fluid dynamics (CFD) was used to determine the 3D pressure distribution around the wing and then the nodal forces were exported into the finite element program by means...
Design and analysis of a mode-switching micro unmanned aerial vehicle
Cakici, Ferit; Leblebicioğlu, Mehmet Kemal (SAGE Publications, 2016-12-01)
In this study, design and analysis of a mode-switching vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) with level flight capability is considered. The design of the platform includes both multirotor and fixed-wing (FW) conventional airplane structures; therefore named as VTOL-FW. The aircraft is modeled using aerodynamical principles including post-stall conditions. Trim conditions are obtained by solving constrained optimization problems. Linear analysis techniques are utilized for trim ...
Adaptive controller applications for rotary wing aircraft models of varying simulation fidelity
Tarımcı, Onur; Yavrucuk, İlkay; Department of Aerospace Engineering (2009)
This thesis concerns the design, analysis and testing of adaptive controllers for rotary wing aircraft, in particular helicopters. A non-linear helicopter model is developed and validated by trim and dynamic response analyses. A inner-outer loop cascade controller is designed with a trajectory generator in the most outer layer and an adaptive neural network controller is implemented to the inner loop. Controller is then challenged to carry out complex maneuvers autonomously under turbulence. Finally, the ce...
Multidisciplinary design of an unmanned aerial vehicle wing
Sakarya, Arzu; Yaman, Yavuz; Department of Aerospace Engineering (2011)
In this thesis, the structural design, structural analysis and producibility analysis of an unmanned aerial vehicle wing were performed. Three different wing models, made of different materials, were designed. The wings were aluminum wing model and composite wing models; made of prepreg and wet lay-up. All wings have the same aerodynamic geometry and structural configuration under the same flight conditions. The structural designs of three wings were done by using Unigraphics NX. The finite element modeling...
Citation Formats
M. E. Yalçın, “Design and analysis of an equipment rack structure of a medium transport aircraft,” M.S. - Master of Science, Middle East Technical University, 2009.