Adaptive controller applications for rotary wing aircraft models of varying simulation fidelity

Download
2009
Tarımcı, Onur
This thesis concerns the design, analysis and testing of adaptive controllers for rotary wing aircraft, in particular helicopters. A non-linear helicopter model is developed and validated by trim and dynamic response analyses. A inner-outer loop cascade controller is designed with a trajectory generator in the most outer layer and an adaptive neural network controller is implemented to the inner loop. Controller is then challenged to carry out complex maneuvers autonomously under turbulence. Finally, the center of gravity location is varied to severe values to observe adaptation characteristics to investigate the requirement on the knowledge of the center of gravity location during such adaptive controller design.

Suggestions

Aero-structural design and analysis of an unmanned aerial vehicle and its mission adaptive wing
İnsuyu, Erdoğan Tolga; Şahin, Melin; Department of Aerospace Engineering (2010)
This thesis investigates the effects of camber change on the mission adaptive wing of a structurally designed unmanned aerial vehicle (UAV). The commercial computational fluid dynamics (CFD) software ANSYS/FLUENT is employed for the aerodynamic analyses. Several cambered airfoils are compared in terms of their aerodynamic coefficients and the effects of the camber change formed in specific sections of the wing on the spanwise pressure distribution are investigated. The mission adaptive wing is modeled struc...
Robust controller design for a fixed wing uav
Prach, Anna; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2009)
This study describes the design and implementation of the pitch and roll autopilots for a fixed wing unmanned vehicle. A Tactical Unmanned Aerial Vehicle (TUAV), which is designed at the Middle East Technical University (METU), is used as a platform. This work combines development of the classical and robust controllers, which are used for the pitch and roll autopilots. One of the important steps in the thesis is development of the non-linear dynamic model of the UAV, which is developed in MATLAB/Simulink e...
Development of a comprehensive and modular modelling, analysis and simulation tool for helicopters
Yücekayalı, Arda; Kutay, Ali Türker; Department of Aerospace Engineering (2011)
Helicopter flight dynamic, rotor aerodynamic and dynamic analyses activities have been a great dispute since the first helicopters, at both design and test stages. Predicting rotor aerodynamic and dynamic characteristics, helicopter dynamic behavior and trimmed flight conditions is a huge challenge to engineers as it involves the tradeoff between accuracy, fidelity, complexity and computational cost. Flight dynamic activities such as; predicting trim conditions, helicopter dynamic behavior and simulation of...
Investigation of rotor wake interactions in helicopters using 3d unsteady free vortex wake methodology
Yemenici, Öznur; Uzol, Oğuz; Department of Aerospace Engineering (2010)
This thesis focuses on developing and examining the capabilities of a new in-house aerodynamic analysis tool, AeroSIM+, and investigating rotor-rotor aerodynamic interactions for two helicopters, one behind the other in forward flight. AeroSIM+ is a 3-D unsteady vortex panel method potential flow solver based on a free vortex wake methodology. Validation of the results with the experimental data is performed using the Caradonna-Tung hovering rotor test case. AeroSIM+ code is improved for forward flight cond...
Design and analysis of an equipment rack structure of a medium transport aircraft
Yalçın, Mehmet Efruz; Yaman, Yavuz; Department of Aerospace Engineering (2009)
In this study, equipment rack structure for a medium transport aircraft was designed and finite element analysis of this design was performed. The equipment rack structure, which was designed for a modernization project, was positioned and dimensions were determined by regarding the geometry of primary structures of the aircraft. The structure was designed such that it satisfies the pre-defined margin of safety values. Design of the structure was prepared in Unigraphics, and the finite element modeling and ...
Citation Formats
O. Tarımcı, “Adaptive controller applications for rotary wing aircraft models of varying simulation fidelity,” M.S. - Master of Science, Middle East Technical University, 2009.