Interactive editing of complex terrains on parallel graphics architectures

Download
2009
Gün, Ufuk
Rendering large terrains on large screens at interactive frame rates is a challenging area of computer graphics. In the last decade, real-time terrain rendering on large screens played a significant role in various simulations and virtual reality systems. To fulfill the demand of these systems, two software tools are developed. The first tool is a Terrain Editor that creates and manipulates large terrains. The second is a Multi-Display Viewer that displays the created terrains on multiple screens. Since the typical large terrains consist of many polygons, graphics boards might have difficulties in rendering the terrain at interactive frame rates. The common solution to this problem is to use terrain simplification without losing image quality. To this purpose, in this study, a paged level of detail mechanism that works with multiple threads is developed and integrated on multiple screen display systems to increase the performance of the high resolution systems.

Suggestions

Efficient rendering of complex scenes on heterogeneous parallel architectures
Yıldırım Kalkan, Gökçe; İşler, Veysi; Department of Computer Engineering (2014)
In computer graphics, generating high-quality images at high frame rates for rendering complex scenes is a challenging task. A well-known approach to tackling this important task is to utilize parallel processing through distributing rendering and simulation tasks to different processing units. In this thesis, several methods of distributed rendering architectures are investigated, and the bottlenecks in distributed rendering are analyzed. Based on this analysis, guidelines for distributed rendering in a ne...
3D face reconstruction using stereo vision
Dikmen, Mehmet; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2006)
3D face modeling is currently a popular area in Computer Graphics and Computer Vision. Many techniques have been introduced for this purpose, such as using one or more cameras, 3D scanners, and many other systems of sophisticated hardware with related software. But the main goal is to find a good balance between visual reality and the cost of the system. In this thesis, reconstruction of a 3D human face from a pair of stereo cameras is studied. Unlike many other systems, facial feature points are obtained a...
Acceleration of direct volume rendering with programmable graphics hardware
Yalim Keles, Hacer; Es, Alphan; İşler, Veysi (Springer Science and Business Media LLC, 2007-01-01)
We propose a method to accelerate direct volume rendering using programmable graphics hardware (GPU). In the method, texture slices are grouped together to form a texture slab. Rendering non-empty slabs from front to back viewing order generates the resultant image. Considering each pixel of the image as a ray, slab silhouette maps (SSMs) are used to skip empty spaces along the ray direction per pixel basis. Additionally, SSMs contain terminated ray information. The method relies on hardware z-occlusion cul...
3D synthetic human face modelling tool based on T-spline surfaces
Aydoğan, Ali; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2007)
In this thesis work, a 3D Synthetic Human Face Modelling Software is implemented using C++ and OpenGL. Bézier surfaces, B-spline surfaces, Nonuniform Rational B-spline surfaces, Hierarchical B-Spline surfaces and T-spline surfaces are evaluated as options for the surface description method. T-spline surfaces are chosen since they are found to be superior considering the requirements of the work. In the modelling process, a modular approach is followed. Firstly, high detailed facial regions (i.e. nose, eyes,...
Automatic eye tracking and intermediate view reconstruction for 3D imaging systems
Bediz, Yusuf; Akar, Gözde; Department of Electrical and Electronics Engineering (2006)
In recent years, the utilization of 3D display systems became popular in many application areas. One of the most important issues in the utilization of these systems is to render the correct view to the observer based on his/her position. In this thesis, we propose and implement a single user view rendering system for autostereoscopic/stereoscopic displays. The system can easily be installed on a standard PC together with an autostereoscopic display or stereoscopic glasses (shutter, polarized, pulfrich, and...
Citation Formats
U. Gün, “Interactive editing of complex terrains on parallel graphics architectures,” M.S. - Master of Science, Middle East Technical University, 2009.