Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Massive crowd simulation with parallel processing
Download
index.pdf
Date
2010
Author
Yılmaz, Erdal
Metadata
Show full item record
Item Usage Stats
218
views
132
downloads
Cite This
This thesis analyzes how parallel processing with Graphics Processing Unit (GPU) could be used for massive crowd simulation, not only in terms of rendering but also the computational power that is required for realistic simulation. The extreme population in massive crowd simulation introduces an extra computational load, which is quite difficult to meet by using Central Processing Unit (CPU) resources only. The thesis shows the specific methods and approaches that maximize the throughput of GPU parallel computing, while using GPU as the main processor for massive crowd simulation. The methodology introduced in this thesis makes it possible to simulate and visualize hundreds of thousands of virtual characters in real-time. In order to achieve two orders of magnitude speedups by using GPU parallel processing, various stream compaction and effective memory access approaches were employed. To simulate crowd behavior, fuzzy logic functionality on the GPU has been implemented from scratch. This implementation is capable of computing more than half billion fuzzy inferences per second.
Subject Keywords
Computer software.
,
Information systems.
URI
http://etd.lib.metu.edu.tr/upload/12611627/index.pdf
https://hdl.handle.net/11511/19468
Collections
Graduate School of Informatics, Thesis
Suggestions
OpenMETU
Core
Acceleration of direct volume rendering with texture slabs on programmable graphics hardware
Yalım, Hacer; Coşar, Ahmet; Department of Computer Engineering (2005)
This thesis proposes an efficient method to accelerate ray based volume rendering with texture slabs using programmable graphics hardware. In this method, empty space skipping and early ray termination are utilized without performing any preprocessing on CPU side. The acceleration structure is created on the fly by making use of depth buffer efficiently on Graphics Processing Unit (GPU) side. In the proposed method, texture slices are grouped together to form a texture slab. Rendering all the slabs from fro...
Acceleration of direct volume rendering with programmable graphics hardware
Yalim Keles, Hacer; Es, Alphan; İşler, Veysi (Springer Science and Business Media LLC, 2007-01-01)
We propose a method to accelerate direct volume rendering using programmable graphics hardware (GPU). In the method, texture slices are grouped together to form a texture slab. Rendering non-empty slabs from front to back viewing order generates the resultant image. Considering each pixel of the image as a ray, slab silhouette maps (SSMs) are used to skip empty spaces along the ray direction per pixel basis. Additionally, SSMs contain terminated ray information. The method relies on hardware z-occlusion cul...
Accelerated ray tracing using programmable graphics pipelines
Es, Ş. Alphan; İşler, Veysi; Department of Computer Engineering (2008)
The graphics hardware have evolved from simple feed forward triangle rasterization devices to flexible, programmable, and powerful parallel processors. This evolution allows the researchers to use graphics processing units (GPU) for both general purpose computations and advanced graphics rendering. Sophisticated GPUs hold great opportunities for the acceleration of computationally expensive photorealistic rendering methods. Rendering of photorealistic images in real-time is a challenge. In this work, we inv...
Interactive editing of complex terrains on parallel graphics architectures
Gün, Ufuk; İşler, Veysi; Department of Computer Engineering (2009)
Rendering large terrains on large screens at interactive frame rates is a challenging area of computer graphics. In the last decade, real-time terrain rendering on large screens played a significant role in various simulations and virtual reality systems. To fulfill the demand of these systems, two software tools are developed. The first tool is a Terrain Editor that creates and manipulates large terrains. The second is a Multi-Display Viewer that displays the created terrains on multiple screens. Since the...
Voxel transformation: scalable scene geometry discretization for global illumination
Yalciner, Bora; Sahillioğlu, Yusuf (Springer Science and Business Media LLC, 2020-10-01)
In real-time computer graphics, efficient discretization of scenes is required in order to accelerate graphics related algorithms such as realistic rendering with indirect illumination and visibility checking. Sparse voxel octree (SVO) is a popular data structure for such a discretization task. Populating an SVO with data is challenging when dynamic object count is high, especially when data per spatial location is large. Problem of populating such trees is adressed with our Voxel Transformation method, whe...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Yılmaz, “Massive crowd simulation with parallel processing,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.