Novel donor-acceptor type green polymer bearing pyrrole as the donor unit with excellent switching times and very low band gap and its multichromic copolymers

Çelebi, Selin
A new neutral state green polymer, poly (2,3-bis(4-tert-butylphenyl)-5,8-di(1H-pyrrol-2-yl) quinoxaline) (PTBPPQ) was synthesized and its copolymer with bis(3,4-ethylenedioxythiophene) (BiEDOT) and 4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-dodecyl-2H-benzo [1,2,3] triazole (BEBT) were produced. Finally polymers’ potential use as an electrochromic material was investigated. Electrochromic properties of the polymers were investigated by several methods including spectroelectrochemistry, kinetic and colorimetry studies. Key properties of conjugated polymers such as band gap, maximum absorption wavelength, the intergap states that appear upon doping and evolution of polaron and bipolaron bands were investigated via spectroelectrochemistry experiments. Switching times and optical contrasts of the homopolymer and the copolymer were evaluated via kinetic studies. Copolymer of TBPPQ with BiEDOT and BEBT were electrochemically synthesized and characterized. Resulting copolymer films have distinct electrochromic properties and revealed multichromism through the entire visible region. Although BiEDOT and BEBT have different oxidation potentials, the resulting copolymers have very similar redox behaviors. In a monomer free solution, both copolymers show four colors from purple, gray, light green to transmissive blue with the variation of the applied potential. Copolymerization with BiEDOT and BEBT not only decreases the band gap, Eg, but also enhances the electrochromic and optical properties. Hence, electrochemical copolymerization is considered to be a powerful tool to improve the electrochromic properties of quinoxaline derivatives. It should be noted that PTBPPQ is one of the few examples of neutral state green polymeric materials with superior switching properties. Hence, PTBPPQ can be used as a green polymeric material for display technologies.


Electrochemical Hydride Generation and Atom Trapping Atomic Absorption Spectrometry for Determination of Antimony
Menemenlioğlu, İpek; Ataman, Osman Yavuz; Department of Chemistry (2004)
Electrochemical hydride generation is a suitable alternative to common hydride generation by NaBH4 which is widely used for the detection of volatile elements such as As, Se, Sb, Sn, Bi, Ge, Te and Pb. In this study, a thin-layer flow through electrochemical cell was designed. Lead and platinum foils were employed as cathode and anode materials, respectively, for the generation of antimony hydride. Argon was used as the carrier gas. The inlet arm of the conventional quartz tube atomizer was used for on-line...
Enhancing electrochromic and kinetic properties of poly(2,3-bis(4-tert-butylphenyl)-5,8-di(1H-pyrrol-2-yl) quinoxaline) by copolymerization
Celebi, Selin; Baran, Derya; Balan, Abidin; Toppare, Levent Kamil (Elsevier BV, 2010-02-28)
Electrochemical copolymerization was utilized to combine several properties into a single material in order to obtain a highly stable polymer with a low band gap to meet the requirements for color variation. In that sense, two new donor acceptor type electrochromic copolymers of 2,3-bis(4-tert-butylphenyl)5,8-di(1H-pyrrol-2-yl) quinoxaline (TBPPQ) with bis(3,4-ethylenedioxythiophene) (BiEDOT) and with 4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-dodecyl-2H-benzo [ 1,231 triazole (BEBT) were synthesiz...
Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes
Yuksel, Recep; Coskun, Sahin; Ünalan, Hüsnü Emrah (Elsevier BV, 2016-03-01)
We present a new hybrid material composed of molybdenum (IV) oxide (MoO2) shell on highly conducting silver nanowire (Ag NW) core in the network form for the realization of coaxial Ag NW/MoO2 nanocomposite supercapacitor electrodes. Ag NWs were simply spray coated onto glass substrates to form conductive networks and conformal MoO2 layer was electrodeposited onto the Ag NW network to create binder-free coaxial supercapacitor electrodes. Combination of Ag NWs and pseudocapacitive MoO2 generated an enhanced e...
Donor acceptor type neutral state green polymer bearing pyrrole as the donor unit
Celebi, Selin; Balan, Abidin; Epik, Bugra; Baran, Derya; Toppare, Levent Kamil (Elsevier BV, 2009-07-01)
A new neutral state green polymer, poly (2,3-bis(4-tert-butylphenyl)-5,8-di(1H-pyrrol-2-yl) quinoxaline) (PTBPPQ) was synthesized and its potential use as an electrochromic material was investigated. Spectroelectrochemistry studies showed that polymer reveals two distinct absorption bands as expected for a donor-acceptor type polymer, at 408 and 745 nm. In addition, polymer has excellent switching properties with satisfactory optical contrasts and very short switching times. Outstanding optical contrast in ...
Multichromic polymers of benzotriazole derivatives: Effect of benzyl substitution
Yigitsoy, Basak; Karim, S. M. Abdul; Balan, Abidin; Baran, Derya; Toppare, Levent Kamil (Elsevier BV, 2011-02-01)
Two electroactive monomers 1-benzyl-4,7-di(thiophen-2-yl))-2H-benzo[d][1,2,3]triazole (BBTA) and 2-benzyl-4,7-di(thiophen-2-yl))-2H-benzo[d][1,2,3]triazole (BBTS) were synthesized with satisfactory yields. The effect of substitution site on electrochemical and optical properties was investigated with cyclic voltammetry and spectroelectrochemical studies. Results showed that position of pendant group alters the electronic structure of the resulting polymer causing different optical and electrochemical behavi...
Citation Formats
S. Çelebi, “Novel donor-acceptor type green polymer bearing pyrrole as the donor unit with excellent switching times and very low band gap and its multichromic copolymers,” M.S. - Master of Science, Middle East Technical University, 2009.