Adsorption of gold atoms on anatase TiO2 (100)-1x1 surface

Download
2009
Vural, Kıvılcım Başak
In this work the electronic and structural properties of anatase TiO2 (100) surface and gold adsorption have been investigated by using the first-principles calculations based on density functional theory (DFT). TiO2 is a wide band-gap material and to this effects it finds numerous applications in technology such as, cleaning of water, self-cleaning, coating, solar cells and so on. Primarily, the relation between the surface energy of the anatase (100)-1x1 phase and the TiO2-layers is examined. After an appropriate atomic layer has been chosen according to the stationary state of the TiO2 slab, the adsorption behavior of the Au atom and in the different combinations are searched for both the surface and the surface which is supported by a single Au atom/atoms. It has been observed that a single Au atom tends to adsorb to the surface which has an impurity of Au atom or atoms. Although, the high metal concentration on the surface have increased the strength of the adsorption, it is indicated that the system gains a metallic property which is believed to cause problems in the applications. In addition, the gold clusters of the dimer (Au2) and the trimer (Au3) have been adsorbed on the surface and their behavior on the surface is investigate. It is observed that the interaction between Au atoms in the atomic cluster each other is stronger than that of gold clusters and the surface.

Suggestions

Density functional theory investigation of TiO2 anatase nanosheets
Sayın, Ceren Sibel; Toffoli, Hande; Department of Physics (2009)
In this thesis, the electronic properties of nanosheets derived from TiO2 anatase structure which acts as a photocatalyst, are investigated using the density functional theory. We examine bulk constrained properties of the nanosheets derived from the (001) surface and obtain their optimized geometries. We investigate properties of lepidocrocite-type TiO2 nanosheets and nanotubes of different sizes formed by rolling the lepidocrocite nanosheets. We show that the stability and the band gaps of the considered ...
Investigation of electrical and optical properties of ag-in-se based devices
Kaleli, Murat; Parlak, Mehmet; Department of Physics (2010)
Ternary chalcopyrite compound semiconductors have received much attention as the absorbing layers in the polycrystalline thin film solar cell structures. Most widely used one is CuInSe2 and CuInGaSe2 structures, but there are some diffusion problems with copper atoms in the structure. On the other hand, AgInSe2 is promising material with several advantages over the CuInSe2. The aim of this study was to investigate and optimize the production and post-production methods of the Ag-In-Se thin film based hetero...
Properties of light and heavy baryons in light cone qcd sum rules formalism
Azizi, Kazem; Özpineci, Altuğ; Department of Physics (2009)
In this thesis, we investigate the masses, form factors and magnetic dipole moments of some light octet, decuplet and heavy baryons containing a single heavy quark in the framework of the light cone QCD sum rules. The magnetic dipole moments can be measured considering radiative transitions within a multiplet or between multiplets. Analyzing the transitions among the baryons and calculating the above mentioned parameters can give us insight into the structure of those baryons. In analyzing the aforementione...
Physical properties of Pd, Ni metals and their binary alloys
Özdemir Kart, Sevgi; Tomak, Mehmet; Department of Physics (2004)
The Sutton Chen and quantum Sutton Chen potentials are used in molecular dynamics simulations to describe the structural, thermodynamical, and transport properties of Pd, Ni and their binary alloys in solid, liquid, and glass phases. Static properties including elastic constants, pair distribution function, static structure factor, and dynamical properties consisting of phonon dispersion relation, diffusion coefficient, and viscosity are computed at various temperatures. The melting temperatures for Pd-Ni s...
Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations
KURBAN, MUSTAFA; Erkoç, Şakir (Elsevier BV, 2017-04-01)
Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT.) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that,...
Citation Formats
K. B. Vural, “Adsorption of gold atoms on anatase TiO2 (100)-1x1 surface,” M.S. - Master of Science, Middle East Technical University, 2009.