Qualitative behavior of solutions of dynamic equations on time scales

Download
2010
Mert, Raziye
In this thesis, the asymptotic behavior and oscillation of solutions of dynamic equations on time scales are studied. In the first part of the thesis, asymptotic equivalence and asymptotic equilibrium of dynamic systems are investigated. Sufficient conditions are established for the asymptotic equivalence of linear systems and linear and quasilinear systems, respectively, and for the asymptotic equilibrium of quasilinear systems by unifying and extending some known results for differential systems and difference systems to dynamic systems on arbitrary time scales. In particular, for the asymptotic equivalence of differential systems, the well-known theorems of Levinson and Yakubovich are improved and the well-known theorem of Wintner for the asymptotic equilibrium of linear differential systems is generalized to arbitrary time scales. Some of our results for asymptotic equilibrium are new even for difference systems. In the second part, the oscillation of solutions of a particular class of second order nonlinear delay dynamic equations and, more generally, two-dimensional nonlinear dynamic systems, including delay-dynamic systems, are discussed. Necessary and sufficient conditions are derived for the oscillation of solutions of nonlinear delay dynamic equations by extending some continuous results. Specifically, the classical theorems of Atkinson and Belohorec are generalized. Sufficient conditions are established for the oscillation of solutions of nonlinear dynamic systems by unifying and extending the corresponding continuous and discrete results. Particularly, the oscillation criteria of Atkinson, Belohorec, Waltman, and Hooker and Patula are generalized.

Suggestions

Application of the boundary element method to parabolic type equations
Bozkaya, Nuray; Tezer-Sezgin, Münevver; Department of Mathematics (2010)
In this thesis, the two-dimensional initial and boundary value problems governed by unsteady partial differential equations are solved by making use of boundary element techniques. The boundary element method (BEM) with time-dependent fundamental solution is presented as an efficient procedure for the solution of diffusion, wave and convection-diffusion equations. It interpenetrates the equations in such a way that the boundary solution is advanced to all time levels, simultaneously. The solution at a requi...
Fundamental solution for coupled magnetohydrodynamic flow equations
Bozkaya, Canan; Tezer, Münevver (Elsevier BV, 2007-06-01)
In this paper, a fundamental solution for the coupled convection-diffusion type equations is derived. The boundary element method (BEM) application then, is established with this fundamental solution, for solving the coupled equations of steady magnetohydrodynamic (MHD) duct flow in the presence of an external oblique magnetic field. Thus, it is possible to solve MHD duct flow problems with the most general form of wall conductivities and for large values of Hartmann number. The results for velocity and ind...
An analysis of a linearly extrapolated BDF2 subgrid artificial viscosity method for incompressible flows
Demir, Medine (Elsevier BV, 2020-10-01)
This report extends the mathematical support of a subgrid artificial viscosity (SAV) method to simulate the incompressible Navier-Stokes equations to better performing a linearly extrapolated BDF2 (BDF2LE) time discretization. The method considers the viscous term as a combination of the vorticity and the grad-div stabilization term. SAV method introduces global stabilization by adding a term, then anti-diffuses through the extra mixed variables. We present a detailed analysis of conservation laws, includin...
Oscillation of even order nonlinear delay dynamic equations on time scales
Erbe, Lynn; Mert, Raziye; Peterson, Allan; Zafer, Ağacık (Institute of Mathematics, Czech Academy of Sciences, 2013-03-01)
One of the important methods for studying the oscillation of higher order differential equations is to make a comparison with second order differential equations. The method involves using Taylor's Formula. In this paper we show how such a method can be used for a class of even order delay dynamic equations on time scales via comparison with second order dynamic inequalities. In particular, it is shown that nonexistence of an eventually positive solution of a certain second order delay dynamic inequality is...
The differential quadrature solution of nonlinear reaction-diffusion and wave equations using several time-integration schemes
Meral, Gulnihal; Tezer, Münevver (Wiley, 2011-04-01)
Three different time-integration schemes, namely the finite difference method (FDM) with a relaxation parameter, the least-squares method (LSM) and the finite element method (FEM), are applied to the differential quadrature (DQM) solution of one-dimensional nonlinear reaction-diffusion and wave equations. In the solution procedure, the space derivatives are discretized using DQM, which may also be used without the need of boundary conditions. The aim of the paper is to find computationally more efficient ti...
Citation Formats
R. Mert, “Qualitative behavior of solutions of dynamic equations on time scales,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.