Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling and control of a hyper redundant manipulator
Download
index.pdf
Date
2010
Author
Bayram, Atilla
Metadata
Show full item record
Item Usage Stats
164
views
88
downloads
Cite This
The hyper redundant manipulators (HRMs) have excessively large degrees of freedom. As a special but practicable subset, the binary HRMs use binary (on-off) actuators with only two stable states such as pneumatic cylinders and solenoids. Such actuators are simple, cheap, and easy to control. Therefore, a binary HRM has been studied in this thesis. The thesis work covers the conceptual design of a spatial binary HRM together with its controlled motion simulations. The manipulator consists of many modules, each of which has the same constructive characteristics and consists of three submodules which are two cascaded variable geometry truss structures working in mutually orthogonal planes and a discrete twister. The manipulator is assumed to be powered with pneumatic on-off actuators. Because of the discrete nature of the binary actuators, a small but continuously actuated manipulator with six degrees of freedom is installed as the last module of the HRM in order to compensate the discretization errors. To solve the inverse kinematics problem of the HRM, three methods have been presented. These are the spline fitting, the extended spline fitting, and the workspace filling methods. The spline fitting method is based on forcing the spine (i.e. the center line) of the manipulator to approximate a spatial reference spline which is specified as a desired curve. In the extended spline fitting method, the result found in the first method is improved by using a genetic algorithm. In the work space filling method, the workspace of the manipulator is filled randomly with a sufficiently large finite number of discrete configurational samples. If it is desired to have concentration on a particular region of the work space, then that region is filled by using a genetic algorithm. After the filling stage, the sample closest to the desired configuration is determined by a suitable search algorithm. Finally, in order to simulate the motion of the HRM between two successive configurational steps, the equations of motions of the HRM are obtained in terms of the pressure forces generated by the binary pneumatic actuators. Then, the necessary simulations are carried out to demonstrate the performance of the HRM in some typical applications.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/3/12611653/index.pdf
https://hdl.handle.net/11511/19464
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
The conceptual design of a spatial binary hyper redundant manipulator and its forward kinematics
Bayram, Atilla; Özgören, Mustafa Kemal (2012-01-01)
The hyper redundant manipulators (HRMs) have excessively many degrees of freedom. As a special but practicable subset of them, the binary hyper-redundant manipulators (BHRMs) use binary (on-off) actuators with only two stable states such as pneumatic cylinders and/or solenoids. This article describes the conceptual design of a spatial BHRM together with its forward kinematics. This BHRM consists of many modules with the same constructive characteristics. The modules increase in size from the tip to the base...
Model updating of a helicopter structure using a newly developed correlation improvement technique
Altunel, Fatih; Çalışkan, Mehmet; Department of Mechanical Engineering (2009)
Numerical model usage has substantially increased in many industries. It is the aerospace industry that numerical models play possibly the most important role for development of optimum design. However, numerical models need experimental verification. This experimental verification is used not only for validation, but also updating numerical model parameters. Verified and updated models are used to analyze a vast amount of cases that structure is anticipated to face in real life. In this thesis, structural ...
Guidelines for building experimental mobile robots with off-the-shelf components
Özkil, Ali Gürcan; Koku, Ahmet Buğra; Department of Mechanical Engineering (2008)
Robotics is an emerging field, and it is also affecting several other fields. Design of robotic platforms gains more importance since the focus and aim of the robotics research broadens widely and the variety of the users is significant. This work aims to present the design of a modular mobile robotic platform, which should be simple, easy to build and easy to use. The concept of modularity, usage of off-the shelf components and utilizing a PC platform, are addressed in this work. As a result of this work, ...
Modeling and simulation of shaped charges
Gürel, Eser; Sert, Cüneyt; Department of Mechanical Engineering (2009)
Shaped charges are explosive devices with a high penetration capability and are used for both civilian and military purposes. In civilian applications shaped charge devices are used in demolition works, oil drilling and mining. In the military applications, shaped charges are used against different kinds of armors, primarily as anti-tank devices. This thesis work involves the modeling and simulation of shaped charge devices, with the focus being on anti-tank warhead design. Both numerical simulation and ana...
Kinematic model calibration of a 7-DOF capstan-driven haptic device for pose and force control accuracy improvement
Baser, Ozgur; Konukseven, Erhan İlhan (SAGE Publications, 2013-01-01)
The literature on kinematic calibration of industrial robots and haptic devices suggests that proper model calibration is indispensable for accurate pose estimation and precise force control. Despite the variety of studies in the literature, the effects of transmission errors on positioning accuracy or the enhancement of force control by kinematic calibration is not fully studied. In this article, an easy to implement kinematic calibration method is proposed for the systems having transmission errors. The p...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Bayram, “Modeling and control of a hyper redundant manipulator,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.