Voxel transformation: scalable scene geometry discretization for global illumination

2020-10-01
Yalciner, Bora
Sahillioğlu, Yusuf
In real-time computer graphics, efficient discretization of scenes is required in order to accelerate graphics related algorithms such as realistic rendering with indirect illumination and visibility checking. Sparse voxel octree (SVO) is a popular data structure for such a discretization task. Populating an SVO with data is challenging when dynamic object count is high, especially when data per spatial location is large. Problem of populating such trees is adressed with our Voxel Transformation method, where pre-generated voxel data is transformed from model space to world space on demand, in contrast to the common way of voxelizing each dynamic object over each frame. Additionally, an accompanying filtering technique for voxel transformation is also proposed. This technique serves proposed system in two ways: (1) resolves issues introduced by the proposed fast and scalable voxel transformation method, and (2) enables smooth transitions between frames and handles the aliasing problem naturally as shown in the supplementary video. As an application use case, the proposed Voxel Transformation method is demonstrated in order to achieve indirect illumination using the well-known voxel cone tracing method. Results, which is compared with the standard voxelization method and ground-truth, are visually appealing and also scalable over large number of dynamic objects as shown in the supplementary video.
JOURNAL OF REAL-TIME IMAGE PROCESSING

Suggestions

REAL-TIME ARBITRARY VIEW RENDERING ON GPU FROM STEREO VIDEO AND TIME-OF-FLIGHT CAMERA
Ates, Tugrul K.; Alatan, Abdullah Aydın (2011-05-18)
Generating in-between images from multiple views of a scene is a crucial task for both computer vision and computer graphics fields. Photorealistic rendering, 3DTV and robot navigation are some of many applications which benefit from arbitrary view synthesis, if it is achieved in real-time. GPUs excel in achieving high computation power by processing arrays of data in parallel, which make them ideal for real-time computer vision applications. This paper proposes an arbitrary view rendering algorithm by usin...
Massive crowd simulation with parallel processing
Yılmaz, Erdal; İşler, Veysi; Department of Information Systems (2010)
This thesis analyzes how parallel processing with Graphics Processing Unit (GPU) could be used for massive crowd simulation, not only in terms of rendering but also the computational power that is required for realistic simulation. The extreme population in massive crowd simulation introduces an extra computational load, which is quite difficult to meet by using Central Processing Unit (CPU) resources only. The thesis shows the specific methods and approaches that maximize the throughput of GPU parallel com...
Task parallelism for ray tracing on a gpu cluster
Ünlü, Çağlar; İşler, Veysi; Department of Computer Engineering (2008)
Ray tracing is a computationally complex global illumination algorithm that is used for producing realistic images. In addition to parallel implementations on commodity PC clusters, recently, Graphics Processing Units (GPU) have also been used to accelerate ray tracing. In this thesis, ray tracing is accelerated on a GPU cluster where the viewing plane is divided into unit tiles. Slave processes work on these tiles in a task parallel manner which are dynamically assigned to them. To decrease the number of r...
Real-time arbitrary view rendering from stereo video and time-of-flight camere
Ateş, Tuğrul Kağan; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2010)
Generating in-between images from multiple views of a scene is a crucial task for both computer vision and computer graphics fields. Photorealistic rendering, 3DTV and robot navigation are some of many applications which benefit from arbitrary view synthesis, if it is achieved in real-time. Most modern commodity computer architectures include programmable processing chips, called Graphics Processing Units (GPU), which are specialized in rendering computer generated images. These devices excel in achieving h...
Interactive editing of complex terrains on parallel graphics architectures
Gün, Ufuk; İşler, Veysi; Department of Computer Engineering (2009)
Rendering large terrains on large screens at interactive frame rates is a challenging area of computer graphics. In the last decade, real-time terrain rendering on large screens played a significant role in various simulations and virtual reality systems. To fulfill the demand of these systems, two software tools are developed. The first tool is a Terrain Editor that creates and manipulates large terrains. The second is a Multi-Display Viewer that displays the created terrains on multiple screens. Since the...
Citation Formats
B. Yalciner and Y. Sahillioğlu, “Voxel transformation: scalable scene geometry discretization for global illumination,” JOURNAL OF REAL-TIME IMAGE PROCESSING, pp. 1585–1596, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37695.