Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Photoluminescence properties of Si nanocrystals embedded in SiO2 matrix
Download
index.pdf
Date
2010
Author
Seyhan, Ayşe
Metadata
Show full item record
Item Usage Stats
226
views
101
downloads
Cite This
This thesis examines the luminescence properties of nanoscale silicon (Si) by using spectroscopic techniques. Since the development of new optical devices requires understanding light emission mechanism optical spectroscopy has become more important tool in the analysis of these structures. In this thesis, Si nanocrystals embedded in SiO2 matrix will be studied. Photoluminescence (PL) and Time-resolved photoluminescence spectroscopy (TRPL) have been used to detect the light emission in UV-Vis-NIR range. Experiments have been performed in the temperature range 10-300 K. PL is sensitive to impurities and defects that affect materials quality and device performance. In this context, the role of defects in limiting the luminescence of Si nanocrystals and the removal of these defects by hydrogen passivation has been investigated. v TRPL was employed to determine the time evolution of photoluminescence as function of temperature. The decay time of the PL spectra was determined by a stretched exponential function and perfectly fitted to an expression based on three excitonic levels. Carrier lifetimes associated with these three levels were determined and compared with literature. Additionally, temporal variation of PL from free-standing Si nanoparticles is studied under a strong laser illumination. The observed bleaching behavior (time dependent emission intensity), which is reversible, have discussed in terms of exciton trapping at the interface between nanocrystal and the surrounding oxide layer. The results of this thesis will provide new insight on the understanding of light emission mechanism of Si nanocrytals.
Subject Keywords
Physics.
,
Spectroscopy.
,
Nanocrystals.
URI
http://etd.lib.metu.edu.tr/upload/3/12611750/index.pdf
https://hdl.handle.net/11511/19477
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Density functional theory investigation of TiO2 anatase nanosheets
Sayın, Ceren Sibel; Toffoli, Hande; Department of Physics (2009)
In this thesis, the electronic properties of nanosheets derived from TiO2 anatase structure which acts as a photocatalyst, are investigated using the density functional theory. We examine bulk constrained properties of the nanosheets derived from the (001) surface and obtain their optimized geometries. We investigate properties of lepidocrocite-type TiO2 nanosheets and nanotubes of different sizes formed by rolling the lepidocrocite nanosheets. We show that the stability and the band gaps of the considered ...
Adsorption of gold atoms on anatase TiO2 (100)-1x1 surface
Vural, Kıvılcım Başak; Ellialtıoğlu, Süleyman Şinasi; Department of Physics (2009)
In this work the electronic and structural properties of anatase TiO2 (100) surface and gold adsorption have been investigated by using the first-principles calculations based on density functional theory (DFT). TiO2 is a wide band-gap material and to this effects it finds numerous applications in technology such as, cleaning of water, self-cleaning, coating, solar cells and so on. Primarily, the relation between the surface energy of the anatase (100)-1x1 phase and the TiO2-layers is examined. After an app...
Light harvesting with Ge quantum dots embedded in SiO2 or Si3N4
Cosentino, Salvatore; Ozen, Emel Sungur; Raciti, Rosario; Mio, Antonio M.; Nicotra, Giuseppe; Simone, Francesca; Crupi, Isodiana; Turan, Raşit; Terrasi, Antonio; AYDINLI, ATİLLA; Mirabella, Salvo (2014-01-28)
Germanium quantum dots (QDs) embedded in SiO2 or in Si3N4 have been studied for light harvesting purposes. SiGeO or SiGeN thin films, produced by plasma enhanced chemical vapor deposition, have been annealed up to 850 degrees C to induce Ge QD precipitation in Si based matrices. By varying the Ge content, the QD diameter can be tuned in the 3-9 nm range in the SiO2 matrix, or in the 1-2 nm range in the Si3N4 matrix, as measured by transmission electron microscopy. Thus, Si3N4 matrix hosts Ge QDs at higher d...
Photoluminescence spectroscopy in the study of growth of CdSxSe1-x nanocrystals in glass
Allahverdi, C; Yukselici, MH; Turan, Raşit; Seyhan, A (IOP Publishing, 2004-08-01)
Growth of CdS0.08Se0.92 nanocrystals embedded in glass is studied through the combinative analysis of optical absorption and photoluminescence (PL) spectroscopy at room temperature. The quantum confinement effect is observed in these structures. Average nanocrystal radii are found to be in the range of 2.3-4.2 nm with the help of a quantized state effective mass theory. Photoluminescence spectra are studied by means of the model of Ravindran et al (1999 Nanostruct. Mater. 11 603). The difference between the...
Rapidly rotating ultracold atoms in harmonic traps
Ghazanfari, Nader; Oktel, Mehmet Özgür; Özpineci, Altuğ; Department of Physics (2011)
In this study we investigate the properties of trapped atoms subjected to rapid rotations. The study is divided into two distinct parts, one for fermions, another for bosons. In the case of the degenerate Fermi gas we explore the density structure of non-interacting cold atoms when they are rotated rapidly. On the other hand, for rapidly rotating two component Bose condensate, we search for new lattice structures in the presence of contact and dipolar interactions. First, the density structure of Fermi gase...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Seyhan, “Photoluminescence properties of Si nanocrystals embedded in SiO2 matrix,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.