Immobilization of invertase on a conducting polymer of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole

2008-03-01
Tuncagil, Sevinc
Kiralp, Senem
Varls, Serhat
Toppare, Levent Kamil
In this study, immobilization of invertase was achieved on a conducting polymer of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole) (SNS (NO2)) via electrochemical polymerization. Kinetic parameters, maximum reaction rate (V-max) and substrate affinity (K-m), optimum temperature and pH, operational and storage stabilities of immobilized enzyme were determined.
REACTIVE & FUNCTIONAL POLYMERS

Suggestions

Immobilization of invertase and glucose oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole
Sahmetlioglu, E; Yuruk, H; Toppare, Levent Kamil; Cianga, I; Yagci, Y (Elsevier BV, 2006-03-01)
In this study, immobilizations of invertase and glucose oxidase were achieved in conducting thiophene functionalized copolymers of vinyl alcohol with thiophene side groups and pyrrole (PVATh/PPy) via electrochemical polymerization. The kinetic parameters, V-max (maximum reaction rate) and K-m (substrate affinity), of both free and immobilized enzymes were determined. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate, on the enzyme activity and film morphologies was ex...
Immobilization of invertase and glucose oxidase in conducting H-type polysiloxane/polypyrrole block copolymers
Gursel, A; Alkan, S; Toppare, Levent Kamil; Yagci, Y (Elsevier BV, 2003-01-01)
In this study, immobilizations of enzymes, invertase and glucose oxidase, were achieved in conducting copolymers of N-pyrrolyl terminated polydimethylsiloxane/polypyrrole (PDMS/PPy) matrices via electrochemical polymerization. The kinetic parameters, v(max) (maximum reaction rate) and K-m (substrate affinity), of both free and immobilized enzymes were determined. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate, on enzyme activity and film morphologies was examined. ...
Electrochromic performance and ion sensitivity of a terthienyl based fluorescent polymer
Atilgan, Nurdan; CİHANER, ATİLLA; Önal, Ahmet Muhtar (Elsevier BV, 2010-04-01)
A novel terthienyl based fluorescent polymer bearing strong electron-withdrawing substituents directly attached to the 3,4-positions of the central thiophene ring was synthesized by electrochemical polymerization of diethyl 2,5-di(3,4-ethylenedioxythiophen-2-yl)thiophene-3,4-dicarboxylate. The corresponding polymer was characterized by cyclic voltammetry, FT-IR and UV-vis spectroscopy. The polymer has a well-defined redox process (E-p,E-1/2 = 0.74 V) and demonstrates a reversible electrochromic behavior; li...
Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives
ÇAMURLU, PINAR; Kayahan, Senem; Toppare, Levent Kamil (Informa UK Limited, 2008-01-01)
In this study, construction of novel biosensors for the determination of phenolic compound was performed via immobilization of tyrosinase during the electrochemical synthesis of conducting block copolymers of 2-thiophen-3-yl-alkyl ester derivatives with 3,4-ethylenedioxythiophene and synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT). The resultant biosensors were characterized in terms of their maximum reaction rates, Michaelis-Menten constants (Km), temperature and pH stabilities. All the copolymer mat...
Immobilization of Invertase in a Novel Proton Conducting Poly(vinylphosphonic acid) - poly(1-vinylimidazole) Network
Isikli, Suheda; Tuncagil, Sevinc; Bozkurt, Ayhan; Toppare, Levent Kamil (Informa UK Limited, 2010-01-01)
A novel proton conducting polymer blend was prepared by mixing poly(vinylphosphonic acid) (PVPA) with poly(1-vinylimidazole) (PVI) at various stoichiometric ratios via changing molar ratio of monomer repeating unit to achieve the highest protonation. The polymer network having the most suitable stoichiometric ratio for substantial proton conductivity was prepared and characterized by FT-IR spectroscopy and proton conductivity measurements. The network was used for immobilization of invertase and some import...
Citation Formats
S. Tuncagil, S. Kiralp, S. Varls, and L. K. Toppare, “Immobilization of invertase on a conducting polymer of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole,” REACTIVE & FUNCTIONAL POLYMERS, pp. 710–717, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46006.