Immobilization of invertase on a conducting polymer of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole

2008-03-01
Tuncagil, Sevinc
Kiralp, Senem
Varls, Serhat
Toppare, Levent Kamil
In this study, immobilization of invertase was achieved on a conducting polymer of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole) (SNS (NO2)) via electrochemical polymerization. Kinetic parameters, maximum reaction rate (V-max) and substrate affinity (K-m), optimum temperature and pH, operational and storage stabilities of immobilized enzyme were determined.
REACTIVE & FUNCTIONAL POLYMERS

Suggestions

Immobilization of invertase and glucose oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole
Sahmetlioglu, E; Yuruk, H; Toppare, Levent Kamil; Cianga, I; Yagci, Y (Elsevier BV, 2006-03-01)
In this study, immobilizations of invertase and glucose oxidase were achieved in conducting thiophene functionalized copolymers of vinyl alcohol with thiophene side groups and pyrrole (PVATh/PPy) via electrochemical polymerization. The kinetic parameters, V-max (maximum reaction rate) and K-m (substrate affinity), of both free and immobilized enzymes were determined. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate, on the enzyme activity and film morphologies was ex...
Immobilization of invertase and glucose oxidase in conducting H-type polysiloxane/polypyrrole block copolymers
Gursel, A; Alkan, S; Toppare, Levent Kamil; Yagci, Y (Elsevier BV, 2003-01-01)
In this study, immobilizations of enzymes, invertase and glucose oxidase, were achieved in conducting copolymers of N-pyrrolyl terminated polydimethylsiloxane/polypyrrole (PDMS/PPy) matrices via electrochemical polymerization. The kinetic parameters, v(max) (maximum reaction rate) and K-m (substrate affinity), of both free and immobilized enzymes were determined. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate, on enzyme activity and film morphologies was examined. ...
Electrochromic performance and ion sensitivity of a terthienyl based fluorescent polymer
Atilgan, Nurdan; CİHANER, ATİLLA; Önal, Ahmet Muhtar (Elsevier BV, 2010-04-01)
A novel terthienyl based fluorescent polymer bearing strong electron-withdrawing substituents directly attached to the 3,4-positions of the central thiophene ring was synthesized by electrochemical polymerization of diethyl 2,5-di(3,4-ethylenedioxythiophen-2-yl)thiophene-3,4-dicarboxylate. The corresponding polymer was characterized by cyclic voltammetry, FT-IR and UV-vis spectroscopy. The polymer has a well-defined redox process (E-p,E-1/2 = 0.74 V) and demonstrates a reversible electrochromic behavior; li...
Immobilization of Invertase in Copolymer of 2,5-Di(thiophen-2-yl)-1-p-Tolyl-1H-Pyrrole with Pyrrole
Celebi, Selin; Ibibikcan, Esin; Kayahan, Senem; Yigitsoy, Basak; Toppare, Levent Kamil (Informa UK Limited, 2009-01-01)
Immobilization of invertase in conducting copolymer matrix of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole with pyrrole (poly(DDTP-co-Py)) was achieved via electrochemical polymerization. Kinetic parameters, Michaelis-Menten constant, Km and the maximum reaction rate, Vmax were investigated. Operational stability and temperature optimization of the enzyme electrodes were also examined. Immobilized invertase reveals maximum activity at 50 degrees C and; pH 8 and pH 4 for two copolymer matrices. Although the sa...
Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives
ÇAMURLU, PINAR; Kayahan, Senem; Toppare, Levent Kamil (Informa UK Limited, 2008-01-01)
In this study, construction of novel biosensors for the determination of phenolic compound was performed via immobilization of tyrosinase during the electrochemical synthesis of conducting block copolymers of 2-thiophen-3-yl-alkyl ester derivatives with 3,4-ethylenedioxythiophene and synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT). The resultant biosensors were characterized in terms of their maximum reaction rates, Michaelis-Menten constants (Km), temperature and pH stabilities. All the copolymer mat...
Citation Formats
S. Tuncagil, S. Kiralp, S. Varls, and L. K. Toppare, “Immobilization of invertase on a conducting polymer of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1H-pyrrole,” REACTIVE & FUNCTIONAL POLYMERS, pp. 710–717, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46006.