Design, development and manufacturing of an all terrain modular robot platform

Download
2010
Kul, Mustafa Cihangir
The aim of this thesis is to create a flexible multi-purpose modular all terrain robot platform, which has the potential to be used in commercial applications as well as in education and research. In developing this robot platform, it is aimed to use readily available commercial products as much as possible in order to keep the cost of the product low, increase maintainability, and benefit from the improvements made to these components in time. The modularity is attained by designing a two wheeled base module which is autonomous on its own. This base module is composed of two wheels where, the motors located inside these wheels. It is shown that the proposed base module facilitates the configuration of various robots to suit the needs of diverse applications. Detailed design and manufacturing of one of various possible configurations is presented. Performance tests are conducted on this robot configuration and effectiveness of the proposed modular approach is justified.

Suggestions

Data acquisition and processing interface development for 3D laser rangefinder
Çevikbaş, Orçun; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2006)
In this study, it is aimed to improve the previously developed data acquisition program which was run under DOS and 2D surface reconstruction program under Windows. A new system is set up and both data acquisition and processing software are developed to collect and process data within just one application, running under Windows. The main goal of the thesis is to acquire and process the range data taken from the laser rangefinder in order to construct the 3D image map of simple objects in different position...
Development of a bidding algorithm used in an agent-based shop-floor control system
Uluer, Muhtar Ural; Kılıç, Sadık Engin; Department of Mechanical Engineering (2007)
In this study a time based bidding framework is developed which is used for dispatching jobs to manufacturing resources in a virtual shop-floor environment. Agent-based shop-floor control approach is implemented with machine and part agents. The Contract-net communication protocol is utilized as the negotiation scheme between these agents. Single step product reservation (SSPR) technique is adopted throughout the study. Primary objective is determined as meeting the due dates and if the lateness is inevitab...
An algorithm to resolve the optimal locomotion problem of modular robots
Mencek, Hakan; Soylu, Reşit; Department of Mechanical Engineering (2007)
In this study, a novel optimal motion planning algorithm is developed for the locomotion of modular robots. The total energy consumption of the robot is considered to be the optimization criteria. In order to determine the energy consumption of the system, the kinematic and dynamic analyses of the system are performed. Due to the variable number of modules in the system, a recursive formulation is developed for both kinematic and dynamic analyses. Coulomb's static and dynamic friction models are used to mod...
Development of an educational CFD software for two dimensional incompressible flows
Nakiboğlu, Güneş; Sert, Cüneyt; Department of Mechanical Engineering (2007)
The main purpose of this research is to develop a Computational Fluid Dynamics (CFD) software to be used as an educational tool in teaching introductory level fluid mechanics and CFD courses. The software developed for this purpose is called Virtual Flow Lab. It has a graphical user interface (GUI) that enables basic pre-processing, solver parameter and boundary condition setting and post-processing steps of a typical CFD simulation. The pressure-based solver is capable of solving incompressible, laminar, s...
Inverse dynamics control of flexible joint parallel manipulators
Korkmaz, Ozan; İder, Kemal; Department of Mechanical Engineering (2006)
The purpose of this thesis is to develop a position control method for parallel manipulators so that the end effector can follow a desired trajectory specified in the task space where joint flexibility that occurs at the actuated joints is also taken into consideration. At the beginning of the study, a flexible joint is modeled, and the equations of motion of the parallel manipulators are derived for both actuator variables and joint variables by using the Lagrange formulation under three assumptions regard...
Citation Formats
M. C. Kul, “Design, development and manufacturing of an all terrain modular robot platform,” M.S. - Master of Science, Middle East Technical University, 2010.