Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Wideband phase shifter for 6-18 Ghz applications
Download
index.pdf
Date
2010
Author
Boyacıoğlu, Gökhan
Metadata
Show full item record
Item Usage Stats
304
views
251
downloads
Cite This
Phase shifters are common microwave circuit devices, which are widely used in telecommunication and radar applications, microwave measurement systems, and many other industrial applications. They are key circuits of T/R modules and are used to form the main beam of the electronically scanned phase array antennas. Wideband operating range is an important criterion for EW applications. Hence, wideband performance of the phase shifter is also important. In this study, four wideband phase shifter circuits are designed, fabricated and measured for 6-18 GHz frequency range. Phase shifters are separately designed in order to get 11.25, 22.5, 45 and 90º phase shifts with minimum phase error and low return losses. Phase shifter circuits are designed and fabricated in microstrip structure onto two different substrates as Rogers TMM10i and Alumina using printed circuit board and thin film production techniques, respectively. Also phase shifter circuits that include microstrip spiral inductors for DC biasing are designed and fabricated using thin film production technique. For each design the fabricated circuits are measured and results are compared with simulation results in the content of this thesis. Circuit designs and EM simulations are performed by using ADS2008®, Sonnet®, and CST®.
Subject Keywords
Electrical engineering.
,
TK Telecommunication (including telegraphy, telephone, radio, radar, television) 5101-6720
URI
http://etd.lib.metu.edu.tr/upload/2/12612050/index.pdf
https://hdl.handle.net/11511/19718
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Electronically tunable microwave bandstop filter design and implementation
Oruç, Sacid; Yıldırım, Nevzat; Department of Electrical and Electronics Engineering (2010)
In modern broadband microwave applications, receivers are very sensitive to interference signals which can come from the system itself or from hostile emitters. Electronically tunable bandstop filters can be used to eliminate these interference signals with adaptation to changing frequency conditions. In this thesis, electronically tunable bandstop filter design techniques are investigated for microwave frequencies. The aim is to find filter topologies which allow narrowband bandstop or ‘notch’ filter desig...
X-band high power ferrite phase shifters
Altan, Hakkı İlhan; Aydın Çivi, Hatice Özlem; Demir, Şimşek; Department of Electrical and Electronics Engineering (2010)
Ferrite phase shifters are key components of passive phased array antenna systems. In a modern radar system, microwave components in the transmit path should handle high microwave power levels. Also low loss operation in phase shifters is critical, since radar range depends on the microwave power transmitted from the antennas. In this respect, ferrite phase shifters provide required performance characteristics for phased array radar systems. In this thesis, Reggia-Spencer type and twin-toroid type ferrite p...
Reliable real-time video communication in wireless sensor networks
Ayran, Orhan; Akan, Özgür Barış; Department of Electrical and Electronics Engineering (2007)
Many wireless sensor network (WSN) applications require efficient multimedia communication capabilities. However, the existing communication protocols in the literature mainly aim to achieve energy efficiency and reliability objectives and do not address the multimedia communication challenges in WSN. In this thesis, comprehensive performance evaluation of the existing transport protocols is performed and it has been shown that the existing proposals achieve very poor performance in terms of large set of me...
Comparison of the intercarrier interference cancellation methods in OFDM systems
Etiler, Burkay; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2007)
In OFDM systems carrier frequency offset is observed due to Doppler shift and transmitter-receiver frequency mismatches. This offset induces ICI (Intercarrier Interference). In this thesis, repeated data methods and pilot-aided carrier frequency offset(CFO) estimation methods and windowing techniques are used to mitigate the frequency offset problem and a performance comparison is made between these ICI cancellation techniques. Repeated data methods use only half of the bandwidth for information transmissio...
Parallel decodable channel coding implemented on a MIMO testbed
Aktaş, Tuğcan; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2007)
This thesis considers the real-time implementation phases of a multiple-input multiple-output (MIMO) wireless communication system. The parts which are related to the implementation detail the blocks realized on a field programmable gate array (FPGA) board and define the connections between these blocks and typical radio frequency front-end modules assisting the wireless communication. Two sides of the implemented communication testbed are discussed separately as the transmitter and the receiver parts. In a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Boyacıoğlu, “Wideband phase shifter for 6-18 Ghz applications,” M.S. - Master of Science, Middle East Technical University, 2010.