Monitoring variation of surface residual stresses in the shot peened steel components by magnetic barkhausen noise method

Download
2010
Savaş, Serdar
Shot peening is a cold-working process by which residual compressive stresses are being induced in the surface region to increase the fatigue strength and the resistance to stress-corrosion cracking. This study covers non-destructive measurement of surface residual stresses in the shot-peened steel components by a micro-magnetic technique, named as Magnetic Barkhausen Noise (MBN) method. For this purpose, various low alloy steel specimens were prepared by a controlled shot peening process with different intensity, impact angle and coverage values. The measurements showed that a clear relationship exists between residual stresses and the MBN signals. Residual stress values determined by MBN technique were also verified by X-ray diffraction measurements.

Suggestions

Experimental investigation of residual stresses introduced via shot peening and their effect on fatigue life of ball bearings
Küçükyılmaz, Ali; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2010)
In this study, residual stresses introduced via application of shot peening on the raceways of bearing rings and their effect on the fatigue life was investigated experimentally. For improvement of residual compressive stress state, shot peening operation with different parameters was utilized. Residual stress measurements were conducted via X-ray diffraction technique. Optimization of residual stress state during the production of ball bearings is the main target of this study. Process parameters for shot ...
Characterization of ultra-fine grained steel samples produced by high pressure torsion via magnetic barkhausen noise analysis
Bayramoğlu, Sadık; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2009)
High Pressure Torsion (HPT) is one of the most widely used severe plastic deformation methods which enable to obtain a crack free ultra-fine grained bulk material with improved mechanical properties like increased strength and toughness. In the process, a disc shaped sample is pressed between two anvils and deformed via surface friction forces by rotating one of the anvils. The aim of this study is to nondestructively characterize the variations in the deformation uniformity of the severely deformed steel d...
Determination of susceptibility to intergranular corrosion of uns 31803 type duplex stainless steel by electrochemical reactivation technique
Arıkan, Mehmet Emin; Doruk, Mustafa; Department of Metallurgical and Materials Engineering (2008)
In the present work the effect of isothermal ageing treatment on the microstructure and on the localized corrosion resistance of a duplex stainless steel (DSS) was investigated. Specimens taken from a hot rolled cylindrical duplex stainless bar with 22% Cr grade were solution annealed at 1050°C and then sensitization heat treatments were conducted at 650, 725 and 800°C with duration ranging from 100 to 31622 min. The microstructural changes were examined by the light optical microscopy (LOM) and scanning el...
Investigation of the effect of dissimilar channel angular pressing method to the mechanical and microstuctural properties of 6061 aluminum alloy sheets
Kibar, Alp Aykut; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2010)
Dissimilar Channel Angular Pressing (DCAP) method is an effective Severe Plastic Deformation (SPD) technique to improve the mechanical properties of sheets or strips by producing ultrafine grains. The aim of this study is to investigate the evolution of the microstructure and the improvement in mechanical properties of 6061 Al-alloy strips deformed by DCAP up to 5 passes. Mechanical properties such as hardness and strength have been observed to increase up to a certain strain level depending on the microstr...
Monitoring variation of surface residual stresses in shot peened steel components by the magnetic Barkhausen noise method
SAVAŞ, SERDAR; Gür, Cemil Hakan (2010-12-01)
Shot peening is a cold working process by which residual compressive stresses are induced in the surface and near-surface region to increase the fatigue strength and the resistance to stress corrosion cracking This study covers non-destructive evaluation of surface residual stresses in the shot peened steel components by the magnetic Barkhausen noise method For this purpose various sets of steel specimens were prepared by a controlled shot peening process with different intensities impact angles and coverag...
Citation Formats
S. Savaş, “Monitoring variation of surface residual stresses in the shot peened steel components by magnetic barkhausen noise method,” M.S. - Master of Science, Middle East Technical University, 2010.