Determination of susceptibility to intergranular corrosion of uns 31803 type duplex stainless steel by electrochemical reactivation technique

Arıkan, Mehmet Emin
In the present work the effect of isothermal ageing treatment on the microstructure and on the localized corrosion resistance of a duplex stainless steel (DSS) was investigated. Specimens taken from a hot rolled cylindrical duplex stainless bar with 22% Cr grade were solution annealed at 1050°C and then sensitization heat treatments were conducted at 650, 725 and 800°C with duration ranging from 100 to 31622 min. The microstructural changes were examined by the light optical microscopy (LOM) and scanning electron microscopy (SEM). XRD technique and EDS analysis were used for microstructural evolution. Double Loop Electrochemical Potentiodynamic Reactivation (DLEPR) and standard weight loss immersion acid tests were performed in order to determine the degree of sensitization (DOS) to intergranular corrosion. The surfaces remained after the DLEPR test and the weight loss immersion test were also examined to observe the attack locations and their relationship with the chromium depleted zones. The degree of sensitization is measured by determining the ratio of the maximum current generated by the reactivation (reverse) scan to that of the anodic (forward) scan, (Ir/Ia) x 100. Ir is very small (less than 10-5 A/cm2) for solution annealed samples at 1050°C for 1 hr and those aged at 650°C for 100 and 316 min after the solution heat treatment, with the Ir/Ia ratios of 0.027634%, 0.033428% and 0.058928% respectively. Hence these samples were considered as unsensitized and their microstructure was composed of primary ferrite and austenite. However, Ir increased to values as high as 10-2 A/cm2 and even approached Ia for all samples aged for other temperatures and times, associated with high Ir/Ia ratios. The increased degree of sensitization can be attributed to stronger effect of chromium and molybdenum depleted areas. The microstructure was composed of primary ferrite and austenite including also sigma phase and the secondary austenite that would be responsible for the localized chromium impoverishment. The time required for sensitization was shorter in samples aged at higher temperatures. Accordingly ageing times of 1000 min at 725°C and of 316 min at 800°C were sufficient, whereas times longer than 10000 min was needed to achieve a sensitized structure at 650°C.


Characterization of ultra-fine grained steel samples produced by high pressure torsion via magnetic barkhausen noise analysis
Bayramoğlu, Sadık; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2009)
High Pressure Torsion (HPT) is one of the most widely used severe plastic deformation methods which enable to obtain a crack free ultra-fine grained bulk material with improved mechanical properties like increased strength and toughness. In the process, a disc shaped sample is pressed between two anvils and deformed via surface friction forces by rotating one of the anvils. The aim of this study is to nondestructively characterize the variations in the deformation uniformity of the severely deformed steel d...
Experimental investigation of residual stresses introduced via shot peening and their effect on fatigue life of ball bearings
Küçükyılmaz, Ali; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2010)
In this study, residual stresses introduced via application of shot peening on the raceways of bearing rings and their effect on the fatigue life was investigated experimentally. For improvement of residual compressive stress state, shot peening operation with different parameters was utilized. Residual stress measurements were conducted via X-ray diffraction technique. Optimization of residual stress state during the production of ball bearings is the main target of this study. Process parameters for shot ...
Monitoring variation of surface residual stresses in the shot peened steel components by magnetic barkhausen noise method
Savaş, Serdar; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2010)
Shot peening is a cold-working process by which residual compressive stresses are being induced in the surface region to increase the fatigue strength and the resistance to stress-corrosion cracking. This study covers non-destructive measurement of surface residual stresses in the shot-peened steel components by a micro-magnetic technique, named as Magnetic Barkhausen Noise (MBN) method. For this purpose, various low alloy steel specimens were prepared by a controlled shot peening process with different int...
Investigations on bulk glass forming ability of titanium based multicomponent alloys
Süer, Sıla; Mekhrabov, Amdulla O.; Department of Metallurgical and Materials Engineering (2008)
The aim of this study is to investigate the bulk glass forming ability (BGFA) of Ti-based alloy systems. These investigations were carried out in two main parts that are complementary to each other: theoretical and experimental. For theoretical studies, which are based on electronic theory of alloys in pseudopotential approximation, Ti-Zr, Ti-Co and Ti-Cu alloys were chosen as the binary systems. Alloying element additions were performed to each binary for the investigation of the BGFA of multicomponent Ti-...
Production of coal crusher hammer heads by bi-metal casting
Kırma, Turgut; Selçuk, Ekrem; Department of Metallurgical and Materials Engineering (2008)
In this study, by considering different mechanical properties such as wear resistance and toughness of two different metal alloys in design and production stages, bi-metal casting technique was used for producing composite material which will be a solution for the cracking and wear problem in coal crushing hammer heads. The failure analysis of the classical hammer heads which are made from Hadfield steels (austenitic steel) showed that there are crack formations through austenitic grains and also the phase ...
Citation Formats
M. E. Arıkan, “Determination of susceptibility to intergranular corrosion of uns 31803 type duplex stainless steel by electrochemical reactivation technique,” M.S. - Master of Science, Middle East Technical University, 2008.