Modeling of particle filled resin impregnation in compression resin transfer molding

Download
2010
Şaş, Hatice Sinem
Compression Resin Transfer Molding (CRTM) is an advanced liquid molding process for producing continuous fiber-reinforced composite parts in relatively large dimensions and with high fiber volume fractions. This thesis investigates this process for the purpose of producing continuous fiber reinforced composites with particle fillers. In many composites, fillers are used within the resin for various reasons such as cost reduction and improvement of properties. However, the presence of fillers in a process involving resin impregnation through a fibrous medium can result in a composite with non-homogeneous microstructure and properties. This work aims to model the resin impregnation and particle filtration during injection and compression stages of the process. For this purpose, a previously developed particle filtration model is adapted to CRTM. An appropriate commercial software tool is used for numerical solution after a survey of available packages. The process is analyzed based on the developed model for various process scenarios. The results of this study aim to enhance the understanding of particle-filled resin impregnation and particle filtration phenomena in the CRTM process and are likely to be used towards designing optimum process configurations for a desired outcome in the future.

Suggestions

Modeling of resin transfer molding for composites manufacturing
İpek, Hakan; Erdal Erdoğmuş, Merve; Department of Mechanical Engineering (2005)
The resin transfer molding (RTM ) process, in which a thermosetting resin is injected into a mold cavity preloaded with a porous fiber preform, is a manufacturing method for producing advanced continuous fiber reinforced composite products with complex geometries. Numerical simulation of resin transfer molding process is an often needed tool in manufacturing design, in order to analyze the process before the mold is constructed. In this study, a numerical simulation of the resin impregnation process in RTM ...
Assesment of roll-formed products including the cold forming effects
Güner, Alper; Kılıç, S. Engin; Department of Mechanical Engineering (2007)
Roll-forming is an efficient sheet forming process that is used in manufacturing long parts with constant cross-section. The theoretical, experimental and numerical analyses of the process are limited since the sheet takes a complex 3D shape during the process. In this study proper finite element method models to simulate the roll-forming process are examined both numerically and experimentally. In addition, the applicability of 2D plane strain models to the simulation of the process is investigated. To rev...
Design of a touch trigger probe for a coordinate measuring machine
Karuç, Emre; Dölen, Melik; Department of Mechanical Engineering (2007)
Coordinate Measuring Machines (CMMs) have been widely used in industry in order to determine the form / dimensional tolerances of workpieces with very complicated geometrical shapes. Therefore, CMM is an important tool during the manufacturing and quality control phases. Workpiece to be measured on a CMM is probed via touch trigger probe through its stylus tip. In other words, by virtue of the touch trigger probes CMM can acquire the dimensional data of the workpiece that is to be measured. Therefore the pr...
Exact solution of rotating FGM shaft problem in the elastoplastic state of stress
Akis, Tolga; Eraslan, Ahmet Nedim (Springer Science and Business Media LLC, 2007-10-01)
Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca's yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considerina different material compositions as well as a wide range of bore radi...
Development of a shell finite element for large deformation analysis of laminated composites
Yıldız, Tuba; Darendeliler, Haluk; Department of Mechanical Engineering (2008)
The objective of the present work is to investigate the behavior of laminated fiber -reinforced polymer matrix composite shell structures under bending load with the help of a modified finite element computer code which was previously developed for the analysis of pseudo-layered single material shells. The laminates are assumed to be orthotropic and the formulation is adapted to first order shear deformation theory. The aim is to determine the large deformation characteristics numerically, and to predict th...
Citation Formats
H. S. Şaş, “Modeling of particle filled resin impregnation in compression resin transfer molding,” M.S. - Master of Science, Middle East Technical University, 2010.