Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical simulation and analytical optimization of microchannel heat sinks
Download
index.pdf
Date
2010
Author
Türkakar, Göker
Metadata
Show full item record
Item Usage Stats
326
views
166
downloads
Cite This
This study has two main objectives: The performance evaluation of existing microchannel heat sinks using a CFD model, and the dimensional optimization of various heat sinks by minimizing the total thermal resistance. For the analyses, the geometric modeling is performed using the software GAMBIT while the thermal analysis is performed with FLUENT. The developed model compares very well with those available in the literature. Eight different metal-polymer microchannel heat sinks are analyzed using the model to find out how much heat could be provided to the systems while keeping the substrate temperatures below 85°C under a constant pumping power requirement. Taking the objective function as the total thermal resistance, the optimum geometries have been obtained for the mentioned metal-polymer heat sinks as well as more conventional silicon ones. The results of the optimization code agreed very well with available ones in the literature. In the optimization study, the Intel Core i7-900 Desktop Processor Extreme Edition Series is considered as a reference processor which is reported to dissipate 130 W of heat and to have chip core dimensions of 1.891 cm × 1.44 cm. A dimensional optimization study has been performed for various copper and silicon microchannel heat sinks to cool down this processor. To the best of the author’s knowledge, this study contributes to the literature in that, as opposed to the available analytical microchannel optimization studies considering constant thermophysical properties at the fluid inlet temperature, the properties are evaluated at the area weighted average of the fluid inlet and iteratively calculated outlet temperatures. Moreover, the effects of the thermal and hydrodynamic entrance regions on heat transfer and flow are also investigated.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12612377/index.pdf
https://hdl.handle.net/11511/19927
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Analysis of single phase convective heat transfer in microtubes and microchannels
Çetin, Barbaros; Yüncü, Hafit; Department of Mechanical Engineering (2005)
Heat transfer analysis of two-dimensional, incompressible, constant property, hydrodynamically developed, thermally developing, single phase laminar flow in microtubes and microchannels between parallel plates with negligible axial conduction is performed for constant wall temperature and constant wall heat flux thermal boundary conditions for slip flow regime. Fully developed velocity profile is determined analytically, and energy equation is solved by using finite difference method for both of the geometr...
Uncertainty Analysis of Heat Transfer Predictions Using Statistically Modeled Data From a Cooled 1-1/2 Stage High-Pressure Transonic Turbine
Kahveci, Harika Senem (ASME International, 2014-06-01)
This paper compares predictions from a 3D Reynolds-averaged Navier-Stokes code and a statistical representation of measurements from a cooled 1-1/2 stage high-pressure transonic turbine to quantify predictive process sensitivity. A multivariable regression technique was applied to both the inlet temperature measurements obtained at the inlet rake, the wall temperature, and heat transfer measurements obtained via heat-flux gauges on the blade airfoil surfaces. By using the statistically modeled temperature p...
Numerical analysis of ablation process on a two dimensional external surface
Aykan, Fatma Serap; Dursunkaya, Zafer; Department of Mechanical Engineering (2005)
The thermal response analysis of an ablative material on a two dimensional external surface is performed. The method is applied to both rectangular and cylindrical coordinate systems, where rectangular coordinate system is used for comparison with results available in literature. The current study solves the decomposition of the material at high temperatures by using the nth order Arrhenius equation but excludes the removal of char from the surface due to mechanical erosion or phase change and considers tha...
Analysis of single phase convective heat transfer in microchannels with variable thermal conductivity and variable viscosity
Gözükara, Arif Cem; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2010)
In this study simultaneously developing single phase, laminar and incompressible flow in a micro gap between parallel plates is numerically analyzed by including the effect of variation in thermal conductivity and viscosity with temperature. Variable property solutions for continuity, momentum and energy equations are performed in a coupled manner, for air as a Newtonian fluid. In these analyses the rarefaction effect, which is important for the slip flow regime, is taken into account by imposing slip veloc...
Performance anallysis of an intermediate temperature solid oxide fuel cell
Timurkutluk, Bora; Tarı, İlker; Department of Mechanical Engineering (2007)
An intermediate temperature solid oxide fuel cell (SOFC) is developed and its performance is investigated experimentally and theoretically. In the experimental program, a gadolinium doped ceria based membrane electrode group is developed with the tape casting and screen printing methodology and characterized. An experimental setup is devised for the performance measurement of SOFCs and the performance of produced cells is investigated over a range of parameters including the electrolyte thickness, the sinte...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Türkakar, “Numerical simulation and analytical optimization of microchannel heat sinks,” M.S. - Master of Science, Middle East Technical University, 2010.