Preparation and characterization of thermally stable organoclays and their use in polymer based nanocomposites

Download
2010
Abdallah, Wissam
The present study was aimed at exploring the purification and modification of montmorillonite rich Turkish bentonites by organic salts and their subsequent effects on the morphology (X-diffractometry, transmission electron microscopy, scanning electron microscopy), melt flow index, mechanical (Tensile, Impact) and especially thermal stability (thermal gravimetric analysis, differential scanning calorimetry) properties of polymer/organoclay nanocomposites with and without an elastomeric compatibilizer. The bentonite clay mined from Reşadiye (Tokat/Turkey) was purified by sedimentation, resulting in higher cation exchange capacity and thermal stability in comparison to unpurified clay, and then used in the synthesis of six thermally stable organoclays by replacing the interlayer inorganic sodium cations with two (alkyl, aryl) phosphonium and four di-(alkyl, aryl) imidazolium surfactant cations in an attempt to overcome the problem of early decomposition of alkyl ammonium organoclays usually used in polymer nanocomposites. An optimum amount of these organoclays (wt %2) was then used in the production of Polyamide 66 and Poly(ethylene terephthalate) based nanocomposites by melt blending with the help of an optimum amount of elastomeric compatibilizer (wt %5) which also acted as impact modifier. Phosphonium organoclays were used in the production of nanocomposites for both polymers, whereas imidazolium organoclays were used with PET only. The importance of clay purification was revealed in the removal of non-clay minerals available in the raw bentonite clay as confirmed by XRF and XRD, the significant increase in cation exchange capacity and the improved thermal stability of the purified clays as proven by TGA. The interlayer spacing of the phosphonium organoclays ranged from 1.78 to 2.52 nm indicating arrangement between pseudo-trilayers and paraffin-type chains, while the interlayer spacing of imidazolium organoclays ranged between 1.35 nm and 1.45 nm indicating a monolayer arrangement. The effects of chemical structure (chain type), counter ion and alkyl chain length on the thermal stability of the imidazolium salts were investigated. TGA analysis showed that the thermal stability of (alkyl, aryl) phosphonium and di-(alkyl, aryl) imidazolium organoclays proved to be superior to conventionally used quaternary alkyl ammonium organoclays. Not only the thermal stability of the organoclays prevented the nanocomposite from early decomposition, but these organoclays also improved the onset decomposition temperatures of PA66 and PET nanocomposites compared to the pure polymer owing to the dominant barrier effect of the silicate layers as a result of the formation of carbonaceous-silicate char. The reinforcement of PA66 with surface modified phosphonium organoclays and PET with surface modified phosphonium and imidazolium organoclays enhanced the mechanical and thermal properties of the binary and ternary nanocomposites. The mechanical properties were in good agreement with DSC analysis for all the PA66 and PET compositions. The presence of elastomer and organoclays promoted the nucleation process in PA66 blend, binary and ternary nanocomposites. However, the presence of elastomer and organoclay retarded the nucleation in most of the PET composites.

Suggestions

Impact modified polyamide-organoclay nanocomposites
Işık, Işıl; Yılmazer, Ülkü; Department of Chemical Engineering (2007)
The effects of melt state compounding and addition order of ethylene-butyl acrylate-maleic anhydride (E-BA-MAH), ethylene-glycidyl methacrylate (E-GMA), ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer and/or three types of organoclays (Cloisite® 15A, 25A and 30B) on morphology, thermal, mechanical and dynamic mechanical properties of polyamide-6 are investigated. XRD patterns show that the interlayer spacing for Cloisite® 15A remained unchanged; however it increased for the organoclays ...
Nanocomposites based on blends of polyethylene
Işık, Fatma; Yılmazer, Ülkü; Department of Chemical Engineering (2005)
In this study the effects of compatibilizer type, organoclay type, and the addition order of components on the morphological, thermal, mechanical and flow properties of ternary nanocomposites based on low density polyethylene, LDPE were investigated. As compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate, ethylene/glycidyl methacrylate, and ethylene/butyl acrylate/maleic anhydride; as organoclay Cloisite? 15A, Cloisite? 25A and Cloisite? 30B were used. All samples were prepared by a co-rotating t...
Pyrolysis mass spectrometric analysis of copolymer of polyacrylonitrile and polythiophene
Oğuz, Gülcan; Hacaloğlu, Jale; Department of Polymer Science and Technology (2004)
In the first part of this work, the structural and thermal characteristics of polyacrylonitrile, polyacrylonitrile films treated under the electrolysis conditions in the absence of thiophene, polythiophene and the mechanical mixture and a conducting copolymer of polyacrylonitrile/polythiophene have been studied by pyrolysis mass spectrometry technique. The thermal degradation of polyacrylonitrile occurs in three steps; evolution of HCN, monomer, low molecular weight oligomers due to random chain cleavages a...
Synthesis and characterization of a polybenzoxazine from a difunctional amine and a trifunctional phenol
Kaya, Şafak; Tinçer, Teoman; Department of Polymer Science and Technology (2009)
Synthesis of a polymer with benzoxazine units in the main chain backbone by a trifunctional phenol, a difunctional amine, and paraformaldehyde was achieved. Thermal, mechanical and spectroscopic characterization and the viscosity properties of the synthesized polymer were studied. In the first step of this study, a fast and feasible method for the synthesis of the benzoxazine precursors was developed since some methods mentioned in the literature about the synthesis of the benzoxazine derivatives last long ...
Characterization of poly(dihalophenylene oxides) in solution
Kısakürek, Duygu; Binboğa, Nevin; Harrod, John F. (Elsevier BV, 1987-9)
Several different dihalophenylene oxide polymers prepared by thermal decomposition of halophenoxo copper complexes were studied in toluene using light scattering. For polymers of molecular weight around 5 × 104, those obtained from 4-bromo-2,6-dichlorophenoxide, 2-chloro-4,6-dibromophenoxide and 2,4,6-tribromophenoxide appear to be relatively linear with higher values of , whereas those obtained from 2,4,6-trichlorophenoxide and 2-bromo-4,6-dichlorophenoxide appear to have branched or condensed structures w...
Citation Formats
W. Abdallah, “Preparation and characterization of thermally stable organoclays and their use in polymer based nanocomposites,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.