Optimum design of rigid and semi-rigid steel sway frames including soil-structure interaction

Download
2010
Doğan, Erkan
In this study, weight optimization of two dimensional steel frames is carried out in which the flexibility of beam-to-column connections and the soil-structure interaction are considered. In the analysis and design of steel frames, beam-tocolumn connections are assumed to be either fully rigid or perfectly pinned. However, the real behavior of beam-to-column connections is actually between these extremes. Namely, even the simple connections used in practice possess some stiffness falling between these two cases mentioned above. Moreover, it is found that there exists a nonlinear relationship between the moment and beam-to-column rotation when a moment is applied to a flexible connection. These partially restrained connections influence the drift (P- effect) of whole structure as well as the moment distribution in beams and columns. Use of a direct nonlinear inelastic analysis is one way to account for all these effects in frame design. To be able to implement such analysis, beam-to-column connections should be assumed and modeled as semi-rigid connections. In the present study, beam-to-column connections are modeled as “end plate without column stiffeners” and “top and seat angle with web angles”. Soil-structure interaction is also included in the analysis. Frames are assumed to be resting on nonlinear soil, which is represented by a set of axial elements. Particle swarm optimization method is used to develop the optimum design algorithm. The Particle Swarm method is a numerical optimization technique that simulates the social behavior of birds, fishes and bugs. In nature fish school, birds flock and bugs swarm not only for reproduction but for other reasons such as finding food and escaping predators. Similar to birds seek to find food, the optimum design process seeks to find the optimum solution. In the particle swarm optimization each particle in the swarm represents a candidate solution of the optimum design problem. The design algorithm presented selects sections for the members of steel frame from the complete list of sections given in LRFD- AISC (Load and Resistance Factor Design, American Institute of Steel Construction). Besides, the design constraints are implemented from the specifications of the same code which covers serviceability and strength limitations. The optimum design algorithm developed is used to design number of rigid and semi-rigid steel frames.

Suggestions

Optimum characteristic properties of isolators with bilinear force-displacement hysteresis for seismic protection of bridges built on various site soils
Dicleli, Murat (Elsevier BV, 2011-07-01)
In this study, closed form equations as functions of the isolator, bridge and ground motion properties are formulated to calculate the optimum characteristic strength, Q(d) and post-elastic stiffness, k(d), of the isolator to minimize the maximum isolator displacement (MID) and force (MIF) for seismic isolated bridges (SIBS). For this purpose, first, sensitivity analyses are conducted to identify the bridge, isolator and ground motion parameters that affect the optimum values of Q(d) and k(d). Next, for the...
Optimum Properties of Seismic Isolation Systems in Highway Bridges to Minimize Isolator Displacements or Substructure Forces
Dicleli, Murat (null; 2019-07-06)
In this study, closed form equations as functions of the isolator, bridge and ground motion properties are formulated to calculate the optimum characteristic strength, Qd and post-elastic stiffness, kd, of the isolator to minimize the maximum isolator displacement (MID) and force (MIF) for seismic isolated bridges (SIBs). For this purpose, first, sensitivity analyses are conducted to identify the bridge, isolator and ground motion parameters that affect the optimum values of Qd and kd. Next, for the identif...
Effective Stress and Shear Strength of Moist Uniform Spheres
Toker, Nabi Kartal; Culligan, Patricia J. (Wiley, 2014-05-01)
In continuum soil mechanics, the mechanical behavior of an element of soil is related to the effective stress, which is a measure of the average stress transmitted through the solid matrix in the form of contact stresses. In unsaturated soils, the coexistence of water and air within the soil pore space complicates this concept because the microscopic distribution of each fluid phase in soil pores cannot be known. Because it is thus not possible to physically measure effective stress in unsaturated soils, it...
Uncertainty quantification of transient unsaturated seepage through embankment dams
Çalamak, Melih; Yanmaz, Ali Melih (American Society of Civil Engineers (ASCE), 2017-06-01)
Sensitivity analysis is conducted to investigate the effects of uncertainty in hydraulic conductivity and van Genuchten parameters on transient seepage. To this end, a random number generator is used to generate random values from probability distributions of each parameter. The generator is coupled with finite-element software that handles seepage analysis in porous media. The Monte Carlo simulation approach is adopted for stochastic seepage analyses. The suggested method is applied on a homogeneous dam ma...
Assessment of core-filter configuration performance of rock-fill dams under uncertainties
Çalamak, Melih; Yanmaz, Ali Melih (American Society of Civil Engineers (ASCE), 2018-04-01)
Probabilistic analyses are conducted for seepage through a rock-fill dam having two different core-filter configurations: one sloping and the other a central symmetrical core-filter arrangement. Uncertainties in core and filter are considered, assuming their hydraulic conductivities as random variables. For this purpose, finite-element software used for groundwater flow and seepage analyses is coupled with a random-number-generation algorithm. Monte Carlo simulations are performed for probabilistic seepage ...
Citation Formats
E. Doğan, “Optimum design of rigid and semi-rigid steel sway frames including soil-structure interaction,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.