Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A comparative analysis of matched field processors for underwater acoustic source localization
Download
index.pdf
Date
2010
Author
Sarıkaya, Tevfik Bahadır
Metadata
Show full item record
Item Usage Stats
244
views
89
downloads
Cite This
In this thesis, localization of the underwater sound sources using matched field processing technique is considered. Localization of the underwater sound sources is one of the most important problems encountered in underwater acoustics and signal processing. Many techniques were developed to localize sources in range, depth and bearing angle. However, most of these techniques do not consider or only slightly takes into account the environmental factors that dramatically effect the propagation of underwater sound. Matched field processing has been developed as a technique that fully considers the environmental factors. Matched field processing has proven to be successful in many applications such as localization of sources in range and depth, the determination of environmental parameters, and the evaluation of model accuracies. In this study, first a comparative analysis of narrowband matched field processors is given. Namely four main processors: Bartlett processor, Minimum Variance Distortionless Response (MVDR) processor, MVDR with neighboring location constraints and MVDR with environmental perturbation constraints are compared in terms of their probability of correct localization under certain environmental conditions. Secondly, a performance assesment for the most common broadband matched field processors is made. The correct localization performances for incoherent broadband matched field processor, Tolstoy/Michalopoulo's coherent matched field processor and broadband matched field processor with environmental perturbation constraints is given for certain environmental conditions. Finally, a new weighting approach to combine data for broadband matched field processing is introduced. The fact that information from different frequencies may have different reliability depending on the environmental conditions is considered to develop a weighting scheme. It is shown that a performance gain compared to existing processors can be achieved by using the weighting scheme introduced in this study.
Subject Keywords
Sound.
URI
http://etd.lib.metu.edu.tr/upload/12612578/index.pdf
https://hdl.handle.net/11511/20105
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Prediction of noise transmission in a submerged structure by statistical energy analysis
Cavcar Yayladere, Bahar; Çalışkan, Mehmet; Department of Mechanical Engineering (2012)
The aim of this study is to develop a sound transmission model that can be used to predict the vibration and noise levels of a submerged vessel. The noise transmitted from the mechanical vibrations of the hull of a submarine and the turbulent boundary layer excitation on the submarine are investigated. A simplified physical model of the submarine hull including the effects of bulkheads, end enclosures, ring stiffeners and fluid loading due to the interaction of the surrounding medium is presented in the stu...
3D perceptual soundfield reconstruction via sound field extrapolation
Erdem, Eg; Hacıhabiboğlui Hüseyin.; Department of Multimedia Informatics (2020)
Perceptual sound field reconstruction (PSR) is a spatial audio recording and reproduction method based on the application of stereophonic panning laws in microphone array design. PSR allows rendering a perceptually veridical and stable auditory perspective in the horizontal plane of the listener, and involves recording using nearcoincident microphone arrays. This thesis extends the two dimensional PSR concept to three dimensions and allows reconstructing an arbitrary sound field based on measurements with a...
An experimental study on off-design performance and noise in small pumps
Şahin, Fatma Ceyhun; Eralp, O. Cahit; Department of Mechanical Engineering (2007)
This thesis study is focused on experimentally investigating pump noise at design and off-design operations and its relations with pressure fluctuations. Small size pumps are placed in a semi-anechoic chamber and operated at various system conditions and various rotational pump speeds. Pump operational data, noise data and time dependent pressure data are recorded. Fast Fourier Transform spectra of noise and pressure data are compared. Coherence spectrum between sound pressure level and hydraulic pressures ...
The role of pore structure in sound absorption performance of lime based plasters
Meric Nursal, Işın; Tavukçuoğlu, Ayşe; Çalışkan, Mehmet (The Institute of Noise Control Engineering of the USA, Inc.; 2015-08-09)
Sound absorption performance is directly related to the pore structure of materials. The effect of materials' pore characteristics on sound absorption performance has been examined in detail, especially for materials like mineral wool, foamed metals, porous concrete, sand and soils. However, there is scarcity of knowledge in literature on relationships between sound absorption characteristics of lime-based plasters used as finishing layer(s) in buildings and their pore structure. In this study sets of lime-...
Predictions on absorption and scattering characteristics of acoustic scatterers modified with micro-perforated panels
Odabaş, Erinç; Çalışkan, Mehmet; Department of Mechanical Engineering (2012)
In this study, the basic absorption and scattering characteristics of acoustic scatterers, specifically Schroeder Diffusers, are investigated. Schroeder Diffusers are one of the most widely used acoustic scatterers in which the scattering phenomenon is predictable due to the geometry of the diffuser, based on a particular mathematical sequence. It is shown that it is possible to increase the amount of absorption by modifying the diffuser structure by means of adding perforated panels into the wells or narro...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. B. Sarıkaya, “A comparative analysis of matched field processors for underwater acoustic source localization,” M.S. - Master of Science, Middle East Technical University, 2010.