Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Predictions on absorption and scattering characteristics of acoustic scatterers modified with micro-perforated panels
Download
index.pdf
Date
2012
Author
Odabaş, Erinç
Metadata
Show full item record
Item Usage Stats
213
views
118
downloads
Cite This
In this study, the basic absorption and scattering characteristics of acoustic scatterers, specifically Schroeder Diffusers, are investigated. Schroeder Diffusers are one of the most widely used acoustic scatterers in which the scattering phenomenon is predictable due to the geometry of the diffuser, based on a particular mathematical sequence. It is shown that it is possible to increase the amount of absorption by modifying the diffuser structure by means of adding perforated panels into the wells or narrowing diffuser wells. In room acoustics applications, diffusers are conventionally mounted to a wall or ceiling assumed to be rigid enough such that sound wave cannot penetrate through. This thesis proposes a new modification on these diffusers where the diffuser is not backed by a rigid surface; it is hung over a space instead. To construct such a configuration, diffuser wells are terminated with micro-perforated panels (MPP). Inclusion of MPP introduces additional losses; hence, higher absorption can be achieved. However, the most significant absorption in this configuration is achieved below the first resonance frequency of the panel-air space system due to the existence of non-rigid backing. This thesis aims to model the absorption and scattering mechanisms enabled with the non-rigid backing by improving a previously introduced mathematical model.
Subject Keywords
Acoustical engineering .
,
Sound-waves
,
Absorption of sound
,
Electro-acoustics.
URI
http://etd.lib.metu.edu.tr/upload/12614938/index.pdf
https://hdl.handle.net/11511/21989
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Near-field scanning in the time domain on a spherical surface - A formulation using the free-space Green's function
Koc, S; Aydın Çivi, Hatice Özlem; Buyukdura, OM (2001-10-01)
Two formulations for determining the characteristics of an unknown source of acoustic waves using the measurement of its field at its near zone are presented. The measurement in both cases is to be performed on a spherical scan surface which encapsulates the source. The first is for an ideal probe which measures the field at its location. The knowledge of the field is sufficient; its normal derivative is not required. In the second formulation a realistic probe is considered. This time it is required only t...
Assessment of performance of interpolation methods for temporal resolution of wind data on wave modelling
Ak, Gülçe Hazal; Özyurt Tarakcıoğlu, Gülizar; Department of Civil Engineering (2019)
In this thesis, the performance of different interpolation techniques for wind hindcasting have been assessed and a computer model based study have been performed on its effects on wave hindcasting. Climate Forecast System Reanalysis (CFSR) dataset between 1979 and 2010 is used for long term time series analysis and extreme event analysis in Black Sea region. The aims are to obtain new dataset using the existing dataset, to determine the reliability of statistical analysis of winds and to evaluate the error...
Analysis of the peak position and linewidth as a function of temperature for the phase transitions in LiKSO4
Yurtseven, Hasan Hamit (World Scientific Pub Co Pte Lt, 2016-02-20)
Analysis of the peak position and the linewidths of various infrared modes is performed at high (300-850 K) and low (1.5-300 K) temperatures using the experimental data from the literature for LiKSO4 which exhibits a sequence of phase transitions. The temperature dependences of the frequency and the linewidth which are derived from the anharmonic self-energy are fitted to the observed peak positions and the linewidths of the S-O stretching modes (internal nu(3) modes at 1135 cm(-1) and at 1180 cm(-1)), peak...
Numerical and analytical investigation of aerosol acoustics through ducts
Arslan, Ersen; Çalışkan, Mehmet; Department of Mechanical Engineering (2017)
The aim of this thesis is to develop a numerical approach which can solve the sound propagation problem in air-filled circular duct containing water droplets (regarded as an aerosol) in order to obtain acoustic absorption and dispersion characteristics of the system. There exist several analytical approaches in literature for treatment of basic aerosol problems with certain limitations; however; in order to solve rather complex cases, these limitations must be handled and worked out. In this study, a couple...
Prediction of noise transmission in a submerged structure by statistical energy analysis
Cavcar Yayladere, Bahar; Çalışkan, Mehmet; Department of Mechanical Engineering (2012)
The aim of this study is to develop a sound transmission model that can be used to predict the vibration and noise levels of a submerged vessel. The noise transmitted from the mechanical vibrations of the hull of a submarine and the turbulent boundary layer excitation on the submarine are investigated. A simplified physical model of the submarine hull including the effects of bulkheads, end enclosures, ring stiffeners and fluid loading due to the interaction of the surrounding medium is presented in the stu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Odabaş, “Predictions on absorption and scattering characteristics of acoustic scatterers modified with micro-perforated panels,” M.S. - Master of Science, Middle East Technical University, 2012.