Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Prediction of noise transmission in a submerged structure by statistical energy analysis
Download
index.pdf
Date
2012
Author
Cavcar Yayladere, Bahar
Metadata
Show full item record
Item Usage Stats
275
views
347
downloads
Cite This
The aim of this study is to develop a sound transmission model that can be used to predict the vibration and noise levels of a submerged vessel. The noise transmitted from the mechanical vibrations of the hull of a submarine and the turbulent boundary layer excitation on the submarine are investigated. A simplified physical model of the submarine hull including the effects of bulkheads, end enclosures, ring stiffeners and fluid loading due to the interaction of the surrounding medium is presented in the study. An energy approach, i.e., Statistical Energy Analysis (SEA) is used for the analysis because the characterization of the hull of the structure can be done by a very large number of modes over the frequency range of interest and the deterministic analysis methods such as finite element and boundary element methods are limited to low frequency problems. The application consists of the determination of SEA subsystems and the parameters and the utilization of power balance equations to estimate the energy ratio levels of each subsystem to the directly excited subsystem. Through the implementation of SEA method, the sound pressure levels of the hull of the structure are obtained. In terms of military purposes, the sound levels of the submarine compartments are vital in the aspects of the preserving of submarine stealth.
Subject Keywords
Sound
,
Soundproofing.
,
Absorption of sound.
,
Noise barriers.
,
Submarines (Ships)
URI
http://etd.lib.metu.edu.tr/upload/12615067/index.pdf
https://hdl.handle.net/11511/21990
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
A comparative analysis of matched field processors for underwater acoustic source localization
Sarıkaya, Tevfik Bahadır; Çiloğlu, Tolga; Department of Electrical and Electronics Engineering (2010)
In this thesis, localization of the underwater sound sources using matched field processing technique is considered. Localization of the underwater sound sources is one of the most important problems encountered in underwater acoustics and signal processing. Many techniques were developed to localize sources in range, depth and bearing angle. However, most of these techniques do not consider or only slightly takes into account the environmental factors that dramatically effect the propagation of underwater ...
Improvement of finite element model by using sine vibration test results of acommunication satellite
Çekiç, Abdulkadir; Yaman, Yavuz; Department of Aerospace Engineering (2021-2-15)
In this thesis, the vibration analysis of a communication satellite is performed,and the improvementof the finite element model by using vibration test results is presented. First, the satellite finite element model isgenerated using MSC/PATRAN and MSC/NASTRAN commercial software. With the natural frequency and frequency response analysis, the expected frequency values and response amplitudes in accelerometers arecalculated in vibration tests. The results obtained in the vib...
Experimental characterization of a tuned vibration absorber
Aksoy, Tuğrul; Özgen, Gökhan Osman; Acar, Bülent; Gençoğlu, Caner (2016-01-01)
In this paper, experimental characterization studies conducted for a tuned vibration absorber is presented. The tuned vibration absorber has been particularly designed to reduce transverse resonant vibration response of a supported cylinder structure at its dominant two modes. Various testing configurations and techniques have been used such as transmissibility measurements, frequency response measurements, sweep sine testing, impact testing, and random testing. Different testing approaches were needed to e...
Processing forced vibration test records of structural systems using the analytic signal
Çelik, Ozan Cem (SAGE Publications, 2020-09-01)
This article presents the use of the analytic signal procedure for processing the large volume of structural vibration data recorded in forced vibration tests. The analytic signal facilitates the computationally laborious task of extracting the steady-state amplitude for each response measure of interest from the recorded accelerations throughout the building at each operated frequency of the forced vibration source. The implementation of the signal processing procedure introduced here is illustrated in der...
Predictions on absorption and scattering characteristics of acoustic scatterers modified with micro-perforated panels
Odabaş, Erinç; Çalışkan, Mehmet; Department of Mechanical Engineering (2012)
In this study, the basic absorption and scattering characteristics of acoustic scatterers, specifically Schroeder Diffusers, are investigated. Schroeder Diffusers are one of the most widely used acoustic scatterers in which the scattering phenomenon is predictable due to the geometry of the diffuser, based on a particular mathematical sequence. It is shown that it is possible to increase the amount of absorption by modifying the diffuser structure by means of adding perforated panels into the wells or narro...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Cavcar Yayladere, “Prediction of noise transmission in a submerged structure by statistical energy analysis,” M.S. - Master of Science, Middle East Technical University, 2012.