Thermoelectric cooling of a pulsed mode 1064 nm diode pumped Nd: yag laser

Yüksel, Yüksel
Since most of the energy input is converted to thermal energy in laser applications, the proper thermal management of laser systems is an important issue. Maintaining the laser diode and crystal temperature distributions in a narrow range during the operation is the most crucial requirement for the cooling of a laser system. In the present study, thermoelectric cooling (TEC) of a 1064 nm wavelength diode pumped laser source is investigated both experimentally and numerically. During the heat removal process, the thermal resistance through and between the materials, the proper integration of the TEC assembly, and the heat sink efficiency become important. For the aim of evaluating and further improving the system performance, various assembly configurations, highly conductive components, efficient interface materials and heat sink alternatives are considered. Several experiments are conducted during the system development stage, and parallel numerical simulations are performed both for comparison and also for providing valuable input for the system design. Results of the experiments and the simulations agree well with each other. As the laser device works in the transient regime, the experiments and the simulations are also implemented in this regime. In the final part of the study, the experiments are performed under the actual device working conditions. It is proved that with the designed TEC module and the copper heat sink system, the laser device can operate longer than the required operational time successfully.


Thermoelectric polymer films with a significantly high Seebeck coefficient and thermoelectric power factor obtained through surface energy filtering
Guan, Xin; Yıldırım, Erol; Fan, Zeng; Lu, Wanheng; Li, Bichen; Zeng, Kaiyang; Yang, Shuo-Wang; Ouyang, Jianyong (Royal Society of Chemistry (RSC), 2020-07-01)
Thermoelectric (TE) polymers have unique advantages in converting heat into electricity. But their Seebeck coefficient is lower than that of inorganic TE materials by about one order of magnitude. Here, surface energy filtering is proposed to significantly enhance the Seebeck coefficient of TE polymers. The as-prepared poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, the most popular TE polymer) films from aqueous solution have a low Seebeck coefficient of 15-18 mu V K(-1)and a power fact...
Metal–organic framework coated porous structures for enhanced thermoelectric performance
Günay, Ahmet Alperen; Harish, Sivasankaran; Fuchi, Masanori; Kinefuchi, Ikuya; Lee, Yaerim; Shiomi, Junichiro (2022-03-01)
Self-powered sensors/transmitters can be operated by thermoelectric generators if the temperature difference across the device is maximized. Here, we demonstrate a novel strategy to increase the overall thermoelectric conversion efficiency near room temperature (≈30 °C) through enhancement of the heat transfer between the thermoelectric generator and the atmosphere by utilizing the latent heat of atmospheric water, radiative cooling, and an enhanced surface area. To maximize the sorption and emissivity, we ...
Experimental analysis of energy storage device using phase change material integrated with a milk storage system
Nıma, Bonyadı; Somek, Suleyman Kazım; C Cıhan, Ozalevlı; Baker, Derek Keıth; Tarı, İlker (null; 2015-08-12)
Phase change materials (PCMs) have the advantage of storing latent heat at constant temperature and can possess higher energy storage densities in comparison to materials storing sensible heat. Due to these features, latent heat Thermal Energy Storage (TES) devices using PCMs are widely used to store heat in thermal systems. The aim of this study is to experimentally investigate the performance of water PCM in an improved milk storage cooling cycle integrated with a TES device. In this prototype, water is u...
Empirically Based Methodology for Thermoelectric Generation in Notebook Systems
Denker, Reha; Muhtaroglu, Ali; Külah, Haluk (2011-12-02)
Thermoelectric (TE) energy scavenging in high performance microelectronic systems has not been sufficiently developed in the past for practical use due to lack of methodology to minimize the impact of such power generation on performance. This paper describes an empirically based method to enable harvesting of excess heat with examples from ongoing work. The scheme involves detailed characterization of TE modules and notebook systems, along with co-development of correlated system models for the optimizatio...
Thin Wideband Infrared Metamaterial Absorber with Coplanar Metallic Patches of Different Sizes
Ustun, K.; Sayan, Gönül (2016-01-01)
Infrared absorber concept is a vibrant research topic because of the importance of real world applications such as infrared detectors, thermal coolers and energy harvesters. In this paper, we propose and numerically analyze thin metamaterial structures designed to operate in Long Wave Infrared Region, one of the regions that atmosphere shows transparent behavior. It is demonstrated that one of the proposed structures attains absorptance values higher than 80 percent in the wavelength region from 8.14 ium to...
Citation Formats
Y. Yüksel, “Thermoelectric cooling of a pulsed mode 1064 nm diode pumped Nd: yag laser ,” M.S. - Master of Science, Middle East Technical University, 2010.