Thin Wideband Infrared Metamaterial Absorber with Coplanar Metallic Patches of Different Sizes

2016-01-01
Ustun, K.
Sayan, Gönül
Infrared absorber concept is a vibrant research topic because of the importance of real world applications such as infrared detectors, thermal coolers and energy harvesters. In this paper, we propose and numerically analyze thin metamaterial structures designed to operate in Long Wave Infrared Region, one of the regions that atmosphere shows transparent behavior. It is demonstrated that one of the proposed structures attains absorptance values higher than 80 percent in the wavelength region from 8.14 ium to 11.59 mu m. The absorber is thin with a thickness of about 700nm, excluding any additional substrate layer that might be needed for mechanical support. The absorber design approach used in study can be further improved to achieve even flatter absorption spectrum over the LWIR band optimizing the design parameters.
10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS)

Suggestions

Metamaterial Sensor Applications Based on Broadside Coupled SRR and V Shaped Resonator Structures
EKMEKÇİ, EVREN; Sayan, Gönül (2011-07-08)
In this study, the use of broadside-coupled SRR (BC-SRR) metamaterial topology is suggested for pressure, temperature, humidity and concentration sensor applications. Also, the use of V-shaped resonator topology is suggested for pressure sensor application. The feasibility of such sensors are demonstrated by numerical simulations for microwave region under magnetic excitation.
Transparent thin film heaters based on silver nanowire networks
Ergün, Orçun; Ünalan, Hüsnü Emrah; Department of Metallurgical and Materials Engineering (2015)
Transparent thin film heaters are used in various de-fogging and de-icing applications because of their ability to convert electrical energy to thermal energy while allowing to transmit solar light through a surface. Indium tin oxide (ITO) is the conventional transparent conducting material used in transparent thin film heaters. However, due to scarcity of indium and its increasing prices worldwide, coupled with the inflexibility of ITO, alternative materials are being investigated. Silver nanowire networks...
Photonic Crystal and Plasmonic Silicon-Based Light Sources
Makarova, Maria; Gong, Yiyang; Cheng, Szu-Lin; Nishi, Yoshio; Yerci, Selçuk; Li, Rui; Dal Negro, Luca; Vuckovic, Jelena (2010-01-01)
Efficient silicon (Si)-compatible emitters can realize inexpensive light sources for a variety of applications. In this paper, we study both photonic crystal (PC) and plasmonic nanocavities that enhance the emission of Si-compatible materials. In particular, we examine the coupling of silicon nanocrystals (Si-NCs) to silicon nitride PC cavities and Si-NCs in silicon dioxide to plasmonic gratings, both for enhancement of emission in the visible wavelengths. In addition, we also observe the enhancement of the...
Broadband LWIR and MWIR metamaterial absorbers with a simple design topology: almost perfect absorption and super-octave band operation in MWIR band
ÜSTÜN, Kadir; Sayan, Gönül (The Optical Society, 2017-07-01)
Infrared absorbers are essential structures in the design of thermal emitters and thermal infrared imagers. In this study, we propose simple topologies of wideband metamaterial absorbers operating in the long-wave infrared or in the mid-wave infrared (MWIR) wavelengths of the electromagnetic spectrum where the atmosphere shows transparent behavior. Suggested metamaterial absorbers are mostly thin structures that consist of three functional layers from top to bottom: a periodically patterned metal layer, a p...
Near-field radiative transfer in spectrally tunable double-layer phonon-polaritonic metamaterials
Didari, Azadeh; Elçioğlu, Elif Begüm; Okutucu Özyurt, Hanife Tuba; Mengüç, M. Pinar (Elsevier BV, 2018-6)
Understanding of near-field radiative transfer is crucial for many advanced applications such as nanoscale energy harvesting, nano-manufacturing, thermal imaging, and radiative cooling. Near-field radiative transfer has been shown to be dependent on the material and morphological characteristics of systems, the gap distances between structures, and their temperatures. Surface interactions of phononic materials in close proximity of each other has led to promising results for novel near-field radiative trans...
Citation Formats
K. Ustun and G. Sayan, “Thin Wideband Infrared Metamaterial Absorber with Coplanar Metallic Patches of Different Sizes,” presented at the 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), Chania, Greece, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37272.