Hand gesture recognition system

Gingir, Emrah
This thesis study presents a hand gesture recognition system, which replaces input devices like keyboard and mouse with static and dynamic hand gestures, for interactive computer applications. Despite the increase in the attention of such systems there are still certain limitations in literature. Most applications require different constraints like having distinct lightning conditions, usage of a specific camera, making the user wear a multi-colored glove or need lots of training data. The system mentioned in this study disables all these restrictions and provides an adaptive, effort free environment to the user. Study starts with an analysis of the different color space performances over skin color extraction. This analysis is independent of the working system and just performed to attain valuable information about the color spaces. Working system is based on two steps, namely hand detection and hand gesture recognition. In the hand detection process, normalized RGB color space skin locus is used to threshold the coarse skin pixels in the image. Then an adaptive skin locus, whose varying boundaries are estimated from coarse skin region pixels, segments the distinct skin color in the image for the current conditions. Since face has a distinct shape, face is detected among the connected group of skin pixels by using the shape analysis. Non-face connected group of skin pixels are determined as hands. Gesture of the hand is recognized by improved centroidal profile method, which is applied around the detected hand. A 3D flight war game, a boxing game and a media player, which are controlled remotely by just using static and dynamic hand gestures, were developed as human machine interface applications by using the theoretical background of this study. In the experiments, recorded videos were used to measure the performance of the system and a correct recognition rate of ~90% was acquired with nearly real time computation.


3D hand tracking in video sequences
Tokatlı, Aykut; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2005)
The use of hand gestures provides an attractive alternative to cumbersome interface devices such as keyboard, mouse, joystick, etc. Hand tracking has a great potential as a tool for better human-computer interaction by means of communication in a more natural and articulate way. This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures and hand tracking. In this study, a real-time hand tracking system is developed. Mainly, it is image-ba...
Design and Implementation of a Microprocessor Based Data Collection and Interpretation System with Onboard Graphical Interface
Göksügür, Gökhan; Güran, Hasan Cengiz; Department of Electrical and Electronics Engineering (2004)
This thesis reports the design and implementation of a microprocessor based interface unit of a navigation system. The interface unit is composed of a TFT display screen for graphical interface, a Controller Circuit for system control, a keypad interface for external data entrance to the system and a power interface circuit to provide interface between the battery of the navigation system and the Controller Circuit. This thesis reports high speed design of the Controller Circuit and generation of system fun...
A Viterbi decoder using system C for area efficient VLSI imlementation
Sözen, Serkan; Aşkar, Murat; Department of Electrical and Electronics Engineering (2006)
In this thesis, the VLSI implementation of Viterbi decoder using a design and simulation platform called SystemC is studied. For this purpose, the architecture of Viterbi decoder is tried to be optimized for VLSI implementations. Consequently, two novel area efficient structures for reconfigurable Viterbi decoders have been suggested. The traditional and SystemC design cycles are compared to show the advantages of SystemC, and the C++ platforms supporting SystemC are listed, installation issues and examples...
A low-cost uncooled infrared detector array and its camera electronics
Akçören, Dinçay; Akın, Tayfun; Eminoğlu, Selim; Department of Electrical and Electronics Engineering (2011)
This thesis presents the development of integrated readout electronics for diode type microbolometers and development of external camera electronics for microbolometers. The developed readout electronics are fabricated with its integrated 160x120 resolution FPA (Focal Plane Array) in the XFAB SOI-CMOS 1.0 μm process. The pixels in the FPA have 70 μm pixel pitch, and they are sensitive in the 8–12 μm band of the infrared spectrum. Each pixel has 4 serially connected diodes, and diode turn on voltage changes ...
Control electronics for mems gyroscopes and its implementation in a CMOS technology
Eminoğlu, Burak; Akın, Tayfun; Department of Electrical and Electronics Engineering (2011)
This thesis, for the first time in literature, introduces a comprehensive study about analog controller designs for MEMS vibratory gyroscopes. A controller of a MEMS gyroscope is mandatory for robust operation, which is insensitive to sensor parameters and ambient con- ditions. Errors in the controller design not only deteriorate transient performance, such as settling time and overshoot, but also cause performance degradation due to stability problems. Accordingly, true controller design for a gyroscope is...
Citation Formats
E. Gingir, “Hand gesture recognition system,” M.S. - Master of Science, Middle East Technical University, 2010.